""" Root module for all distributed operations in Lightning. Currently supports training on CPU, GPU (dp, ddp, ddp2, horovod) and TPU. """ from contextlib import ExitStack import os from abc import ABC, abstractmethod import time import random import torch from typing import Union, Callable, Any, List, Optional, Tuple, MutableSequence from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning import _logger as log from pytorch_lightning.overrides.data_parallel import ( LightningDistributedDataParallel, LightningDataParallel, ) from pytorch_lightning.utilities import move_data_to_device, NATIVE_AMP_AVALAIBLE from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.distributed import rank_zero_only from pytorch_lightning.utilities import rank_zero_warn try: from apex import amp except ImportError: APEX_AVAILABLE = False else: APEX_AVAILABLE = True try: import torch_xla.core.xla_model as xm except ImportError: XLA_AVAILABLE = False else: XLA_AVAILABLE = True try: import horovod.torch as hvd except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True class TrainerDPMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class on_gpu: bool use_dp: bool use_ddp2: bool use_ddp: bool testing: bool single_gpu: bool root_gpu: ... amp_level: str precision: ... global_rank: int tpu_local_core_rank: int tpu_global_core_rank: int use_tpu: bool data_parallel_device_ids: ... progress_bar_callback: ... tpu_id: Optional[int] on_colab_kaggle: str save_spawn_weights: Callable logger: ... @property @abstractmethod def use_amp(self) -> bool: """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def run_pretrain_routine(self, *args): """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def init_optimizers(self, *args) -> Tuple[List, List, List]: """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def get_model(self) -> LightningModule: """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def reinit_scheduler_properties(self, *args): """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def setup(self, *args) -> None: """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def is_function_implemented(self, *args) -> bool: """Warning: this is just empty shell for code implemented in other class.""" def copy_trainer_model_properties(self, model): if isinstance(model, LightningDataParallel): ref_model = model.module elif isinstance(model, LightningDistributedDataParallel): ref_model = model.module else: ref_model = model for m in [model, ref_model]: m.trainer = self m.logger = self.logger m.use_dp = self.use_dp m.use_ddp2 = self.use_ddp2 m.use_ddp = self.use_ddp m.use_amp = self.use_amp m.testing = self.testing m.single_gpu = self.single_gpu m.use_tpu = self.use_tpu m.tpu_local_core_rank = self.tpu_local_core_rank m.tpu_global_core_rank = self.tpu_global_core_rank def transfer_batch_to_tpu(self, batch: Any, tpu_id: Optional[int] = None): """ Transfers the data to the TPU. Args: batch: A tensor or collection of tensors. tpu_id: The id of the TPU core. If omitted, the first available core is chosen. Return: the tensor on the TPU device. See Also: - :func:`~pytorch_lightning.utilities.apply_func.move_data_to_device` """ if not XLA_AVAILABLE: raise MisconfigurationException( 'Requested to transfer batch to TPU but XLA is not available.' ' Are you sure this machine has TPUs?' ) device = xm.xla_device(tpu_id) return self.__transfer_batch_to_device(batch, device) def transfer_batch_to_gpu(self, batch: Any, gpu_id: Optional[int] = None): """ Transfers the data to the GPU. Args: batch: A tensor or collection of tensors. gpu_id: The id of the GPU device. If omitted, the first available GPU is chosen. Return: the tensor on the GPU device. See Also: - :func:`~pytorch_lightning.utilities.apply_func.move_data_to_device` """ device = torch.device('cuda', gpu_id) return self.__transfer_batch_to_device(batch, device) def __transfer_batch_to_device(self, batch: Any, device: torch.device): model = self.get_model() if model is not None: return model.transfer_batch_to_device(batch, device) return move_data_to_device(batch, device) def single_gpu_train(self, model): # call setup self.setup('fit') if self.is_function_implemented('setup', model): model.setup('fit') model.cuda(self.root_gpu) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model) # TODO: remove with dropping NVIDIA AMP support if self.use_amp and not NATIVE_AMP_AVALAIBLE: # An example model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level) self.optimizers = optimizers self.reinit_scheduler_properties(self.optimizers, self.lr_schedulers) results = self.run_pretrain_routine(model) return results def tpu_train(self, tpu_core_idx, model): # call setup after the ddp process has connected self.setup('fit') if self.is_function_implemented('setup', model): model.setup('fit') # put model on tpu self._device = xm.xla_device(self.tpu_id) if self.tpu_id is not None else xm.xla_device() model.to(self._device) # get the appropriate tpu ranks self.tpu_local_core_rank = xm.get_local_ordinal() self.tpu_global_core_rank = xm.get_ordinal() # avoid duplicating progress bar if self.tpu_global_core_rank != 0 and self.progress_bar_callback is not None: self.progress_bar_callback.disable() self.global_rank = self.tpu_local_core_rank rank_zero_only.rank = self.global_rank # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model) # init 16 bit for TPU if self.precision == 16: os.environ['XLA_USE_BF16'] = str(1) log.info(f'INIT TPU local core: {self.tpu_local_core_rank},' f' global rank: {self.tpu_global_core_rank}') # continue training routine self.run_pretrain_routine(model) # when training ends on these platforms dump weights to get out of the main process if self.on_colab_kaggle: rank_zero_warn('cleaning up... please do not interrupt') self.save_spawn_weights(model) def dp_train(self, model): # call setup after the ddp process has connected self.setup('fit') if self.is_function_implemented('setup', model): model.setup('fit') model.cuda(self.root_gpu) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model) # hack forward to do autocast for the user model_autocast_original_forward = model.forward if self.use_amp and NATIVE_AMP_AVALAIBLE: # wrap the user's forward in autocast and give it back at the end model.forward = torch.cuda.amp.autocast()(model.forward) # TODO: remove with dropping NVIDIA AMP support # check for this bug (amp + dp + !01 doesn't work) # https://github.com/NVIDIA/apex/issues/227 if self.use_dp and self.use_amp and not NATIVE_AMP_AVALAIBLE: if self.amp_level == 'O2': raise MisconfigurationException( f'Amp level {self.amp_level} with DataParallel is not supported.' f' See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.' f' We recommend you switch to ddp if you want to use amp') else: model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level) self.reinit_scheduler_properties(optimizers, self.lr_schedulers) # create list of device ids device_ids = self.data_parallel_device_ids if isinstance(device_ids, int): device_ids = list(range(device_ids)) # set dp device torch.cuda.set_device(self.root_gpu) model = LightningDataParallel(model, device_ids=device_ids) result = self.run_pretrain_routine(model) model.forward = model_autocast_original_forward return result def horovod_train(self, model): # call setup after the ddp process has connected self.setup('fit') if self.is_function_implemented('setup', model): model.setup('fit') if torch.cuda.is_available() and self.on_gpu: # Horovod: pin GPU to local rank assert self.root_gpu == hvd.local_rank() torch.cuda.set_device(self.root_gpu) model.cuda(self.root_gpu) # avoid duplicating progress bar if hvd.rank() != 0 and self.progress_bar_callback is not None: self.progress_bar_callback.disable() # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model) # Horovod: scale the learning rate by the number of workers to account for # increased total batch size for optimizer in self.optimizers: for param_group in optimizer.param_groups: param_group['lr'] *= hvd.size() if self.use_amp: # An example model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level) self.optimizers = optimizers self.reinit_scheduler_properties(self.optimizers, self.lr_schedulers) # Horovod: broadcast parameters & optimizer state to ensure consistent initialization hvd.broadcast_parameters(model.state_dict(), root_rank=0) for optimizer in self.optimizers: hvd.broadcast_optimizer_state(optimizer, root_rank=0) def filter_named_parameters(model, optimizer): opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])]) return [(name, p) for name, p in model.named_parameters() if p in opt_params] # Horovod: wrap optimizers to perform gradient aggregation via allreduce self.optimizers = [ hvd.DistributedOptimizer(optimizer, named_parameters=filter_named_parameters(model, optimizer)) for optimizer in self.optimizers ] # Update logger rank info from Horovod to avoid race conditions from different ranks # creating directories / writing files in the same locations. self.global_rank = hvd.rank() rank_zero_only.rank = self.global_rank with ExitStack() as stack: for optimizer in self.optimizers: # Synchronization will be performed explicitly following backward() stack.enter_context(optimizer.skip_synchronize()) result = self.run_pretrain_routine(model) # Make sure all workers have finished training before returning to the user hvd.join() return result def _normalize_parse_gpu_string_input(s: Union[int, str, List[int]]) -> Union[int, List[int]]: if isinstance(s, str): if s == '-1': return -1 else: return [int(x.strip()) for x in s.split(',') if len(x) > 0] else: return s def get_all_available_gpus() -> List[int]: """ Returns: a list of all available gpus """ return list(range(torch.cuda.device_count())) def _check_data_type(device_ids: Any) -> None: """ Checks that the device_ids argument is one of: None, Int, String or List. Raises a MisconfigurationException otherwise. Args: device_ids: gpus/tpu_cores parameter as passed to the Trainer """ if device_ids is not None and (not isinstance(device_ids, (int, str, MutableSequence)) or isinstance(device_ids, bool)): raise MisconfigurationException("Device ID's (GPU/TPU) must be int, string or sequence of ints or None.") def _normalize_parse_gpu_input_to_list(gpus: Union[int, List[int]]) -> Optional[List[int]]: assert gpus is not None if isinstance(gpus, MutableSequence): return list(gpus) # must be an int if not gpus: # gpus==0 return None if gpus == -1: return get_all_available_gpus() return list(range(gpus)) def sanitize_gpu_ids(gpus: List[int]) -> List[int]: """ Checks that each of the GPUs in the list is actually available. Raises a MisconfigurationException if any of the GPUs is not available. Args: gpus: list of ints corresponding to GPU indices Returns: unmodified gpus variable """ all_available_gpus = get_all_available_gpus() misconfig = False for gpu in gpus: if gpu not in all_available_gpus: misconfig = True if misconfig: # sometimes auto ddp might have different flags # but this is not what the user intended # correct for the user if len(gpus) == len(all_available_gpus): gpus = all_available_gpus else: raise MisconfigurationException(f""" You requested GPUs: {gpus} But your machine only has: {all_available_gpus} """) return gpus def _parse_gpu_ids(gpus: Optional[Union[int, str, List[int]]]) -> Optional[List[int]]: """ Parses the GPU ids given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer`. Args: gpus: An int -1 or string '-1' indicate that all available GPUs should be used. A list of ints or a string containing list of comma separated integers indicates specific GPUs to use. An int 0 means that no GPUs should be used. Any int N > 0 indicates that GPUs [0..N) should be used. Returns: a list of gpus to be used or ``None`` if no GPUs were requested If no GPUs are available but the value of gpus variable indicates request for GPUs then a MisconfigurationException is raised. """ # nothing was passed into the GPUs argument if callable(gpus): return None # Check that gpus param is None, Int, String or List _check_data_type(gpus) # Handle the case when no gpus are requested if gpus is None or isinstance(gpus, int) and gpus == 0: return None # We know user requested GPUs therefore if some of the # requested GPUs are not available an exception is thrown. gpus = _normalize_parse_gpu_string_input(gpus) gpus = _normalize_parse_gpu_input_to_list(gpus) if not gpus: raise MisconfigurationException("GPUs requested but none are available.") gpus = sanitize_gpu_ids(gpus) return gpus def determine_root_gpu_device(gpus: List[int]) -> Optional[int]: """ Args: gpus: non-empty list of ints representing which gpus to use Returns: designated root GPU device id """ if gpus is None: return None assert isinstance(gpus, list), "gpus should be a list" assert len(gpus) > 0, "gpus should be a non empty list" # set root gpu root_gpu = gpus[0] return root_gpu def retry_jittered_backoff(func: Callable, num_retries: int = 5, cap_delay: float = 1.0, base_delay: float = 0.01): """Retry jittered backoff. Based on: https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/ Args: func: tested function num_retries: number of tries cap_delay: max sleep time base_delay: initial sleep time is 10ms """ sleep_delay = base_delay # initial sleep time is 10ms for i in range(num_retries): try: return func() except RuntimeError as err: if i == num_retries - 1: raise err else: continue time.sleep(sleep_delay) sleep_delay = min(cap_delay, random.uniform(base_delay, sleep_delay * 3)) def _parse_tpu_cores(tpu_cores: Union[int, str, List]) -> Optional[Union[List[int], int]]: """ Parses the tpu_cores given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer`. Args: tpu_cores: An int 1 or string '1' indicate that 1 core with multi-processing should be used An int 8 or string '8' indicate that all 8 cores with multi-processing should be used A list of int or a string containing list of comma separated integer indicates specific TPU core to use. Returns: a list of tpu_cores to be used or ``None`` if no TPU cores were requested """ if callable(tpu_cores): return None _check_data_type(tpu_cores) if isinstance(tpu_cores, str): tpu_cores = _parse_tpu_cores_str(tpu_cores.strip()) if not _tpu_cores_valid(tpu_cores): raise MisconfigurationException("`tpu_cores` can only be 1, 8 or [<1-8>]") return tpu_cores def _tpu_cores_valid(tpu_cores): return tpu_cores in (1, 8, None) or ( isinstance(tpu_cores, (list, tuple, set)) and len(tpu_cores) == 1 and tpu_cores[0] in range(1, 9) ) def _parse_tpu_cores_str(tpu_cores): if tpu_cores in ('1', '8'): tpu_cores = int(tpu_cores) else: tpu_cores = [int(x.strip()) for x in tpu_cores.split(',') if len(x) > 0] return tpu_cores def pick_single_gpu(exclude_gpus: list): for i in range(torch.cuda.device_count()): if i in exclude_gpus: continue # Try to allocate on device: device = torch.device(f"cuda:{i}") try: torch.ones(1).to(device) except RuntimeError: continue return i raise RuntimeError("No GPUs available.") def pick_multiple_gpus(nb): picked = [] for _ in range(nb): picked.append(pick_single_gpu(exclude_gpus=picked)) return picked