import inspect import pickle import sys from argparse import ArgumentParser, Namespace from unittest import mock import pytest import torch import tests.base.develop_utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.utilities import argparse_utils @mock.patch('argparse.ArgumentParser.parse_args') def test_default_args(mock_argparse, tmpdir): """Tests default argument parser for Trainer""" mock_argparse.return_value = Namespace(**Trainer.default_attributes()) # logger file to get meta logger = tutils.get_default_logger(tmpdir) parser = ArgumentParser(add_help=False) args = parser.parse_args() args.logger = logger args.max_epochs = 5 trainer = Trainer.from_argparse_args(args) assert isinstance(trainer, Trainer) assert trainer.max_epochs == 5 @pytest.mark.parametrize('cli_args', [ ['--accumulate_grad_batches=22'], ['--weights_save_path=./'], [] ]) def test_add_argparse_args_redefined(cli_args): """Redefines some default Trainer arguments via the cli and tests the Trainer initialization correctness. """ parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parent_parser=parser) args = parser.parse_args(cli_args) # make sure we can pickle args pickle.dumps(args) # Check few deprecated args are not in namespace: for depr_name in ('gradient_clip', 'nb_gpu_nodes', 'max_nb_epochs'): assert depr_name not in args trainer = Trainer.from_argparse_args(args=args) pickle.dumps(trainer) assert isinstance(trainer, Trainer) def test_get_init_arguments_and_types(): """Asserts a correctness of the `get_init_arguments_and_types` Trainer classmethod.""" args = argparse_utils.get_init_arguments_and_types(Trainer) parameters = inspect.signature(Trainer).parameters assert len(parameters) == len(args) for arg in args: assert parameters[arg[0]].default == arg[2] kwargs = {arg[0]: arg[2] for arg in args} trainer = Trainer(**kwargs) assert isinstance(trainer, Trainer) @pytest.mark.parametrize('cli_args', [ ['--callbacks=1', '--logger'], ['--foo', '--bar=1'] ]) def test_add_argparse_args_redefined_error(cli_args, monkeypatch): """Asserts thar an error raised in case of passing not default cli arguments.""" class _UnkArgError(Exception): pass def _raise(): raise _UnkArgError parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parent_parser=parser) monkeypatch.setattr(parser, 'exit', lambda *args: _raise(), raising=True) with pytest.raises(_UnkArgError): parser.parse_args(cli_args) @pytest.mark.parametrize(['cli_args', 'expected'], [ pytest.param('--auto_lr_find --auto_scale_batch_size power', {'auto_lr_find': True, 'auto_scale_batch_size': 'power', 'early_stop_callback': False}), pytest.param('--auto_lr_find any_string --auto_scale_batch_size', {'auto_lr_find': 'any_string', 'auto_scale_batch_size': True}), pytest.param('--auto_lr_find TRUE --auto_scale_batch_size FALSE', {'auto_lr_find': True, 'auto_scale_batch_size': False}), pytest.param('--auto_lr_find t --auto_scale_batch_size ON', {'auto_lr_find': True, 'auto_scale_batch_size': True}), pytest.param('--auto_lr_find 0 --auto_scale_batch_size n', {'auto_lr_find': False, 'auto_scale_batch_size': False}), pytest.param('--early_stop_callback', {'auto_lr_find': False, 'early_stop_callback': True, 'auto_scale_batch_size': False}), pytest.param('--tpu_cores=8', {'tpu_cores': 8}), pytest.param("--tpu_cores=1,", {'tpu_cores': '1,'}), pytest.param( "", { # These parameters are marked as Optional[...] in Trainer.__init__, with None as default. # They should not be changed by the argparse interface. "min_steps": None, "max_steps": None, "log_gpu_memory": None, "distributed_backend": None, "weights_save_path": None, "truncated_bptt_steps": None, "resume_from_checkpoint": None, "profiler": None, }), ]) def test_argparse_args_parsing(cli_args, expected): """Test multi type argument with bool.""" cli_args = cli_args.split(' ') if cli_args else [] with mock.patch("argparse._sys.argv", ["any.py"] + cli_args): parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parent_parser=parser) args = Trainer.parse_argparser(parser) for k, v in expected.items(): assert getattr(args, k) == v assert Trainer.from_argparse_args(args) @pytest.mark.parametrize(['cli_args', 'expected_gpu'], [ pytest.param('--gpus 1', [0]), pytest.param('--gpus 0,', [0]), ]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_argparse_args_parsing_gpus(cli_args, expected_gpu): """Test multi type argument with bool.""" cli_args = cli_args.split(' ') if cli_args else [] with mock.patch("argparse._sys.argv", ["any.py"] + cli_args): parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parent_parser=parser) args = Trainer.parse_argparser(parser) trainer = Trainer.from_argparse_args(args) assert trainer.data_parallel_device_ids == expected_gpu @pytest.mark.skipif(sys.version_info < (3, 7), reason="signature inspection while mocking is not working in Python < 3.7 despite autospec") @pytest.mark.parametrize(['cli_args', 'extra_args'], [ pytest.param({}, {}), pytest.param({'logger': False}, {}), pytest.param({'logger': False}, {'logger': True}), pytest.param({'logger': False}, {'checkpoint_callback': True}), ]) def test_init_from_argparse_args(cli_args, extra_args): unknown_args = dict(unknown_arg=0) # unkown args in the argparser/namespace should be ignored with mock.patch('pytorch_lightning.Trainer.__init__', autospec=True, return_value=None) as init: trainer = Trainer.from_argparse_args(Namespace(**cli_args, **unknown_args), **extra_args) expected = dict(cli_args) expected.update(extra_args) # extra args should override any cli arg init.assert_called_with(trainer, **expected) # passing in unknown manual args should throw an error with pytest.raises(TypeError, match=r"__init__\(\) got an unexpected keyword argument 'unknown_arg'"): Trainer.from_argparse_args(Namespace(**cli_args), **extra_args, **unknown_args)