import os from pytorch_lightning import Trainer, seed_everything, callbacks from tests.base import EvalModelTemplate, BoringModel from unittest import mock import pytest import torch def test_mc_called_on_fastdevrun(tmpdir): seed_everything(1234) os.environ['PL_DEV_DEBUG'] = '1' train_val_step_model = EvalModelTemplate() # fast dev run = called once # train loop only, dict, eval result trainer = Trainer(fast_dev_run=True) trainer.fit(train_val_step_model) # checkpoint should have been called once with fast dev run assert len(trainer.dev_debugger.checkpoint_callback_history) == 1 # ----------------------- # also called once with no val step # ----------------------- train_step_only_model = EvalModelTemplate() train_step_only_model.validation_step = None # fast dev run = called once # train loop only, dict, eval result trainer = Trainer(fast_dev_run=True) trainer.fit(train_step_only_model) # make sure only training step was called assert train_step_only_model.training_step_called assert not train_step_only_model.validation_step_called assert not train_step_only_model.test_step_called # checkpoint should have been called once with fast dev run assert len(trainer.dev_debugger.checkpoint_callback_history) == 1 def test_mc_called(tmpdir): seed_everything(1234) os.environ['PL_DEV_DEBUG'] = '1' # ----------------- # TRAIN LOOP ONLY # ----------------- train_step_only_model = EvalModelTemplate() train_step_only_model.validation_step = None # no callback trainer = Trainer(max_epochs=3, checkpoint_callback=False) trainer.fit(train_step_only_model) assert len(trainer.dev_debugger.checkpoint_callback_history) == 0 # ----------------- # TRAIN + VAL LOOP ONLY # ----------------- val_train_model = EvalModelTemplate() # no callback trainer = Trainer(max_epochs=3, checkpoint_callback=False) trainer.fit(val_train_model) assert len(trainer.dev_debugger.checkpoint_callback_history) == 0 @mock.patch('torch.save') @pytest.mark.parametrize(['epochs', 'val_check_interval', 'expected'], [(1, 1.0, 1), (2, 1.0, 2), (1, 0.25, 4), (2, 0.3, 7)]) def test_default_checkpoint_freq(save_mock, tmpdir, epochs, val_check_interval, expected): model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=epochs, weights_summary=None, val_check_interval=val_check_interval ) trainer.fit(model) # make sure types are correct assert save_mock.call_count == expected @mock.patch('torch.save') @pytest.mark.parametrize(['k', 'epochs', 'val_check_interval', 'expected'], [(1, 1, 1.0, 1), (2, 2, 1.0, 2), (2, 1, 0.25, 4), (2, 2, 0.3, 7)]) def test_top_k(save_mock, tmpdir, k, epochs, val_check_interval, expected): class TestModel(BoringModel): def __init__(self): super().__init__() self.last_coeff = 10.0 def training_step(self, batch, batch_idx): loss = self.step(torch.ones(32)) loss = loss / (loss + 0.0000001) loss += self.last_coeff self.log('my_loss', loss) self.last_coeff *= 0.999 return loss model = TestModel() trainer = Trainer( checkpoint_callback=callbacks.ModelCheckpoint(monitor='my_loss', save_top_k=k), default_root_dir=tmpdir, max_epochs=epochs, weights_summary=None, val_check_interval=val_check_interval ) trainer.fit(model) # make sure types are correct assert save_mock.call_count == expected