# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ To run this template just do: python generative_adversarial_net.py After a few epochs, launch TensorBoard to see the images being generated at every batch: tensorboard --logdir default """ import os from argparse import ArgumentParser, Namespace import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # noqa from torch.utils.data import DataLoader from pl_examples import _TORCHVISION_MNIST_AVAILABLE, cli_lightning_logo from pytorch_lightning.core import LightningDataModule, LightningModule from pytorch_lightning.trainer import Trainer from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: import torchvision from torchvision import transforms if _TORCHVISION_MNIST_AVAILABLE: from torchvision.datasets import MNIST else: from tests.helpers.datasets import MNIST class Generator(nn.Module): """ >>> Generator(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Generator( (model): Sequential(...) ) """ def __init__(self, latent_dim: int = 100, img_shape: tuple = (1, 28, 28)): super().__init__() self.img_shape = img_shape def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *block(latent_dim, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh(), ) def forward(self, z): img = self.model(z) img = img.view(img.size(0), *self.img_shape) return img class Discriminator(nn.Module): """ >>> Discriminator(img_shape=(1, 28, 28)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Discriminator( (model): Sequential(...) ) """ def __init__(self, img_shape): super().__init__() self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), ) def forward(self, img): img_flat = img.view(img.size(0), -1) validity = self.model(img_flat) return validity class GAN(LightningModule): """ >>> GAN(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE GAN( (generator): Generator( (model): Sequential(...) ) (discriminator): Discriminator( (model): Sequential(...) ) ) """ def __init__( self, img_shape: tuple = (1, 28, 28), lr: float = 0.0002, b1: float = 0.5, b2: float = 0.999, latent_dim: int = 100, ): super().__init__() self.save_hyperparameters() # networks self.generator = Generator(latent_dim=self.hparams.latent_dim, img_shape=img_shape) self.discriminator = Discriminator(img_shape=img_shape) self.validation_z = torch.randn(8, self.hparams.latent_dim) self.example_input_array = torch.zeros(2, self.hparams.latent_dim) @staticmethod def add_argparse_args(parent_parser: ArgumentParser, *, use_argument_group=True): if use_argument_group: parser = parent_parser.add_argument_group("pl.GAN") parser_out = parent_parser else: parser = ArgumentParser(parents=[parent_parser], add_help=False) parser_out = parser parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of second order momentum of gradient") parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") return parser_out def forward(self, z): return self.generator(z) @staticmethod def adversarial_loss(y_hat, y): return F.binary_cross_entropy_with_logits(y_hat, y) def training_step(self, batch, batch_idx, optimizer_idx): imgs, _ = batch # sample noise z = torch.randn(imgs.shape[0], self.hparams.latent_dim) z = z.type_as(imgs) # train generator if optimizer_idx == 0: # ground truth result (ie: all fake) # put on GPU because we created this tensor inside training_loop valid = torch.ones(imgs.size(0), 1) valid = valid.type_as(imgs) # adversarial loss is binary cross-entropy g_loss = self.adversarial_loss(self.discriminator(self(z)), valid) tqdm_dict = {'g_loss': g_loss} self.log_dict(tqdm_dict) return g_loss # train discriminator if optimizer_idx == 1: # Measure discriminator's ability to classify real from generated samples # how well can it label as real? valid = torch.ones(imgs.size(0), 1) valid = valid.type_as(imgs) real_loss = self.adversarial_loss(self.discriminator(imgs), valid) # how well can it label as fake? fake = torch.zeros(imgs.size(0), 1) fake = fake.type_as(imgs) fake_loss = self.adversarial_loss(self.discriminator(self(z).detach()), fake) # discriminator loss is the average of these d_loss = (real_loss + fake_loss) / 2 tqdm_dict = {'d_loss': d_loss} self.log_dict(tqdm_dict) return d_loss def configure_optimizers(self): lr = self.hparams.lr b1 = self.hparams.b1 b2 = self.hparams.b2 opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2)) opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2)) return [opt_g, opt_d], [] def on_epoch_end(self): z = self.validation_z.type_as(self.generator.model[0].weight) # log sampled images sample_imgs = self(z) grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('generated_images', grid, self.current_epoch) class MNISTDataModule(LightningDataModule): """ >>> MNISTDataModule() # doctest: +ELLIPSIS <...generative_adversarial_net.MNISTDataModule object at ...> """ def __init__(self, batch_size: int = 64, data_path: str = os.getcwd(), num_workers: int = 4): super().__init__() self.batch_size = batch_size self.data_path = data_path self.num_workers = num_workers self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) self.dims = (1, 28, 28) def prepare_data(self, stage=None): # Use this method to do things that might write to disk or that need to be done only from a single GPU # in distributed settings. Like downloading the dataset for the first time. MNIST(self.data_path, train=True, download=True, transform=transforms.ToTensor()) def setup(self, stage=None): # There are also data operations you might want to perform on every GPU, such as applying transforms # defined explicitly in your datamodule or assigned in init. self.mnist_train = MNIST(self.data_path, train=True, transform=self.transform) def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=self.batch_size, num_workers=self.num_workers) def main(args: Namespace) -> None: # ------------------------ # 1 INIT LIGHTNING MODEL # ------------------------ model = GAN(lr=args.lr, b1=args.b1, b2=args.b2, latent_dim=args.latent_dim) # ------------------------ # 2 INIT TRAINER # ------------------------ # If use distubuted training PyTorch recommends to use DistributedDataParallel. # See: https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel dm = MNISTDataModule.from_argparse_args(args) trainer = Trainer.from_argparse_args(args) # ------------------------ # 3 START TRAINING # ------------------------ trainer.fit(model, dm) if __name__ == '__main__': cli_lightning_logo() parser = ArgumentParser() # Add program level args, if any. # ------------------------ # Add LightningDataLoader args parser = MNISTDataModule.add_argparse_args(parser) # Add model specific args parser = GAN.add_argparse_args(parser) # Add trainer args parser = Trainer.add_argparse_args(parser) # Parse all arguments args = parser.parse_args() main(args)