# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.strategies import DataParallelStrategy from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.rank_zero import rank_zero_deprecation, rank_zero_warn from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature def verify_loop_configurations(trainer: "pl.Trainer") -> None: r""" Checks that the model is configured correctly before the run is started. Args: trainer: Lightning Trainer model: The model to check the configuration. """ model = trainer.lightning_module if trainer.state.fn is None: raise ValueError("Unexpected: Trainer state fn must be set before validating loop configuration.") if trainer.state.fn in (TrainerFn.FITTING, TrainerFn.TUNING): __verify_train_val_loop_configuration(trainer, model) __verify_manual_optimization_support(trainer, model) __check_training_step_requires_dataloader_iter(model) # TODO: Remove this in v1.7 (deprecation: #9816) _check_dl_idx_in_on_train_batch_hooks(model) elif trainer.state.fn == TrainerFn.VALIDATING: __verify_eval_loop_configuration(trainer, model, "val") elif trainer.state.fn == TrainerFn.TESTING: __verify_eval_loop_configuration(trainer, model, "test") elif trainer.state.fn == TrainerFn.PREDICTING: __verify_eval_loop_configuration(trainer, model, "predict") __verify_dp_batch_transfer_support(trainer, model) _check_add_get_queue(model) # TODO: Delete _check_progress_bar in v1.7 _check_progress_bar(model) # TODO: Delete _check_on_post_move_to_device in v1.7 _check_on_post_move_to_device(model) _check_deprecated_callback_hooks(trainer) # TODO: Delete _check_on_hpc_hooks in v1.8 _check_on_hpc_hooks(model) # TODO: Delete on_epoch_start/on_epoch_end hooks in v1.8 _check_on_epoch_start_end(model) # TODO: Delete CheckpointHooks off PrecisionPlugin in v1.8 _check_precision_plugin_checkpoint_hooks(trainer) # TODO: Delete on_pretrain_routine_start/end hooks in v1.8 _check_on_pretrain_routine(model) # TODO: Delete CheckpointHooks off LightningDataModule in v1.8 _check_datamodule_checkpoint_hooks(trainer) def __verify_train_val_loop_configuration(trainer: "pl.Trainer", model: "pl.LightningModule") -> None: # ----------------------------------- # verify model has a training step # ----------------------------------- has_training_step = is_overridden("training_step", model) if not has_training_step: raise MisconfigurationException( "No `training_step()` method defined. Lightning `Trainer` expects as minimum a" " `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined." ) # ----------------------------------- # verify model has a train dataloader # ----------------------------------- has_train_dataloader = trainer._data_connector._train_dataloader_source.is_defined() if not has_train_dataloader: raise MisconfigurationException( "No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a" " `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined." ) # ----------------------------------- # verify model has optimizer # ----------------------------------- has_optimizers = is_overridden("configure_optimizers", model) if not has_optimizers: raise MisconfigurationException( "No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a" " `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined." ) # ---------------------------------------------- # verify model does not have on_train_dataloader # ---------------------------------------------- has_on_train_dataloader = is_overridden("on_train_dataloader", model) if has_on_train_dataloader: rank_zero_deprecation( "Method `on_train_dataloader` is deprecated in v1.5.0 and will be removed in v1.7.0." " Please use `train_dataloader()` directly." ) trainer.overridden_optimizer_step = is_overridden("optimizer_step", model) trainer.overridden_optimizer_zero_grad = is_overridden("optimizer_zero_grad", model) automatic_optimization = model.automatic_optimization going_to_accumulate_grad_batches = trainer.accumulation_scheduler.going_to_accumulate_grad_batches() has_overridden_optimization_functions = trainer.overridden_optimizer_step or trainer.overridden_optimizer_zero_grad if has_overridden_optimization_functions and going_to_accumulate_grad_batches and automatic_optimization: rank_zero_warn( "When using `Trainer(accumulate_grad_batches != 1)` and overriding" " `LightningModule.optimizer_{step,zero_grad}`, the hooks will not be called on every batch" " (rather, they are called on every optimization step)." ) # ----------------------------------- # verify model for val loop # ----------------------------------- has_val_loader = trainer._data_connector._val_dataloader_source.is_defined() has_val_step = is_overridden("validation_step", model) if has_val_loader and not has_val_step: rank_zero_warn("You passed in a `val_dataloader` but have no `validation_step`. Skipping val loop.") if has_val_step and not has_val_loader: rank_zero_warn("You defined a `validation_step` but have no `val_dataloader`. Skipping val loop.") # ---------------------------------------------- # verify model does not have on_val_dataloader # ---------------------------------------------- has_on_val_dataloader = is_overridden("on_val_dataloader", model) if has_on_val_dataloader: rank_zero_deprecation( "Method `on_val_dataloader` is deprecated in v1.5.0 and will be removed in v1.7.0." " Please use `val_dataloader()` directly." ) def _check_progress_bar(model: "pl.LightningModule") -> None: r""" Checks if get_progress_bar_dict is overridden and sends a deprecation warning. Args: model: The model to check the get_progress_bar_dict method. """ if is_overridden("get_progress_bar_dict", model): rank_zero_deprecation( "The `LightningModule.get_progress_bar_dict` method was deprecated in v1.5 and will be removed in v1.7." " Please use the `ProgressBarBase.get_metrics` instead." ) def _check_on_post_move_to_device(model: "pl.LightningModule") -> None: r""" Checks if `on_post_move_to_device` method is overridden and sends a deprecation warning. Args: model: The model to check the `on_post_move_to_device` method. """ if is_overridden("on_post_move_to_device", model): rank_zero_deprecation( "Method `on_post_move_to_device` has been deprecated in v1.5 and will be removed in v1.7. " "We perform automatic parameters tying without the need of implementing `on_post_move_to_device`." ) def __verify_eval_loop_configuration(trainer: "pl.Trainer", model: "pl.LightningModule", stage: str) -> None: loader_name = f"{stage}_dataloader" step_name = "validation_step" if stage == "val" else f"{stage}_step" trainer_method = "validate" if stage == "val" else stage on_eval_hook = f"on_{loader_name}" has_loader = getattr(trainer._data_connector, f"_{stage}_dataloader_source").is_defined() has_step = is_overridden(step_name, model) has_on_eval_dataloader = is_overridden(on_eval_hook, model) # ---------------------------------------------- # verify model does not have on_eval_dataloader # ---------------------------------------------- if has_on_eval_dataloader: rank_zero_deprecation( f"Method `{on_eval_hook}` is deprecated in v1.5.0 and will" f" be removed in v1.7.0. Please use `{loader_name}()` directly." ) # ----------------------------------- # verify model has an eval_dataloader # ----------------------------------- if not has_loader: raise MisconfigurationException(f"No `{loader_name}()` method defined to run `Trainer.{trainer_method}`.") # predict_step is not required to be overridden if stage == "predict": if model.predict_step is None: raise MisconfigurationException("`predict_step` cannot be None to run `Trainer.predict`") elif not has_step and not is_overridden("forward", model): raise MisconfigurationException("`Trainer.predict` requires `forward` method to run.") else: # ----------------------------------- # verify model has an eval_step # ----------------------------------- if not has_step: raise MisconfigurationException(f"No `{step_name}()` method defined to run `Trainer.{trainer_method}`.") def __verify_dp_batch_transfer_support(trainer: "pl.Trainer", model: "pl.LightningModule") -> None: """Raise Misconfiguration exception since these hooks are not supported in DP mode.""" # TODO: Remove this blocker once batch transfer to device is integrated in Lightning for DP mode. batch_transfer_hooks = ("on_before_batch_transfer", "transfer_batch_to_device", "on_after_batch_transfer") datahook_selector = trainer._data_connector._datahook_selector for hook in batch_transfer_hooks: if isinstance(trainer.strategy, DataParallelStrategy) and ( is_overridden(hook, datahook_selector.model) or is_overridden(hook, datahook_selector.datamodule) ): raise MisconfigurationException(f"Overriding `{hook}` is not supported in DP mode.") def __verify_manual_optimization_support(trainer: "pl.Trainer", model: "pl.LightningModule") -> None: if model.automatic_optimization: return if trainer.gradient_clip_val is not None and trainer.gradient_clip_val > 0: raise MisconfigurationException( "Automatic gradient clipping is not supported for manual optimization." f" Remove `Trainer(gradient_clip_val={trainer.gradient_clip_val})`" " or switch to automatic optimization." ) if trainer.accumulate_grad_batches != 1: raise MisconfigurationException( "Automatic gradient accumulation is not supported for manual optimization." f" Remove `Trainer(accumulate_grad_batches={trainer.accumulate_grad_batches})`" " or switch to automatic optimization." ) def __check_training_step_requires_dataloader_iter(model: "pl.LightningModule") -> None: """Check if the current `training_step` is requesting `dataloader_iter`.""" training_step_fx = model.training_step if is_param_in_hook_signature(training_step_fx, "dataloader_iter", explicit=True): if is_overridden("on_train_batch_start", model): raise MisconfigurationException( "The model hook `on_train_batch_start` is not compatible with " "taking a `dataloader_iter` argument in your `training_step`." ) if is_overridden("on_train_batch_end", model): raise MisconfigurationException( "The model hook `on_train_batch_end` is not compatible with " "taking a `dataloader_iter` argument in your `training_step`." ) if model.truncated_bptt_steps > 0: raise MisconfigurationException( "The model taking a `dataloader_iter` argument in your `training_step` " "is incompatible with `truncated_bptt_steps > 0`." ) def _check_add_get_queue(model: "pl.LightningModule") -> None: r""" Checks if add_to_queue or get_from_queue is overridden and sends a deprecation warning. Args: model: The lightning module """ if is_overridden("add_to_queue", model): rank_zero_deprecation( "The `LightningModule.add_to_queue` method was deprecated in v1.5 and will be removed in v1.7." ) if is_overridden("get_from_queue", model): rank_zero_deprecation( "The `LightningModule.get_from_queue` method was deprecated in v1.5 and will be removed in v1.7." ) # TODO: Delete _check_on_hpc_hooks in v1.8 def _check_on_hpc_hooks(model: "pl.LightningModule") -> None: if is_overridden("on_hpc_save", model): rank_zero_deprecation( "Method `LightningModule.on_hpc_save` is deprecated in v1.6 and" " will be removed in v1.8. Please use `LightningModule.on_save_checkpoint` instead." ) if is_overridden("on_hpc_load", model): rank_zero_deprecation( "Method `LightningModule.on_hpc_load` is deprecated in v1.6 and" " will be removed in v1.8. Please use `LightningModule.on_load_checkpoint` instead." ) # TODO: Remove on_epoch_start/on_epoch_end hooks in v1.8 def _check_on_epoch_start_end(model: "pl.LightningModule") -> None: hooks = ( ("on_epoch_start", "on__epoch_start"), ("on_epoch_end", "on__epoch_end"), ) for hook, alternative_hook in hooks: if is_overridden(hook, model): rank_zero_deprecation( f"The `LightningModule.{hook}` hook was deprecated in v1.6 and" f" will be removed in v1.8. Please use `LightningModule.{alternative_hook}` instead." ) def _check_on_pretrain_routine(model: "pl.LightningModule") -> None: hooks = (("on_pretrain_routine_start", "on_fit_start"), ("on_pretrain_routine_end", "on_fit_start")) for hook, alternative_hook in hooks: if is_overridden(hook, model): rank_zero_deprecation( f"The `LightningModule.{hook}` hook was deprecated in v1.6 and" f" will be removed in v1.8. Please use `LightningModule.{alternative_hook}` instead." ) def _check_dl_idx_in_on_train_batch_hooks(model: "pl.LightningModule") -> None: for hook in ("on_train_batch_start", "on_train_batch_end"): if is_param_in_hook_signature(getattr(model, hook), "dataloader_idx", explicit=True): rank_zero_deprecation( f"Base `LightningModule.{hook}` hook signature has changed in v1.5." " The `dataloader_idx` argument will be removed in v1.7." ) def _check_deprecated_callback_hooks(trainer: "pl.Trainer") -> None: for callback in trainer.callbacks: if is_overridden(method_name="on_keyboard_interrupt", instance=callback): rank_zero_deprecation( "The `on_keyboard_interrupt` callback hook was deprecated in v1.5 and will be removed in v1.7." " Please use the `on_exception` callback hook instead." ) # TODO: Remove this in v1.7 (deprecation: #9816) for hook in ("on_train_batch_start", "on_train_batch_end"): if is_param_in_hook_signature(getattr(callback, hook), "dataloader_idx", explicit=True): rank_zero_deprecation( f"Base `Callback.{hook}` hook signature has changed in v1.5." " The `dataloader_idx` argument will be removed in v1.7." ) if is_overridden(method_name="on_init_start", instance=callback): rank_zero_deprecation( "The `on_init_start` callback hook was deprecated in v1.6 and will be removed in v1.8." ) if is_overridden(method_name="on_init_end", instance=callback): rank_zero_deprecation("The `on_init_end` callback hook was deprecated in v1.6 and will be removed in v1.8.") if is_overridden(method_name="on_configure_sharded_model", instance=callback): rank_zero_deprecation( "The `on_configure_sharded_model` callback hook was deprecated in" " v1.6 and will be removed in v1.8. Use `setup()` instead." ) if is_overridden(method_name="on_before_accelerator_backend_setup", instance=callback): rank_zero_deprecation( "The `on_before_accelerator_backend_setup` callback hook was deprecated in" " v1.6 and will be removed in v1.8. Use `setup()` instead." ) if is_overridden(method_name="on_load_checkpoint", instance=callback): rank_zero_deprecation( f"`{callback.__class__.__name__}.on_load_checkpoint` will change its signature and behavior in v1.8." " If you wish to load the state of the callback, use `load_state_dict` instead." " In v1.8 `on_load_checkpoint(..., checkpoint)` will receive the entire loaded" " checkpoint dictionary instead of callback state." ) for hook, alternative_hook in ( ["on_batch_start", "on_train_batch_start"], ["on_batch_end", "on_train_batch_end"], ): if is_overridden(method_name=hook, instance=callback): rank_zero_deprecation( f"The `Callback.{hook}` hook was deprecated in v1.6 and" f" will be removed in v1.8. Please use `Callback.{alternative_hook}` instead." ) for hook, alternative_hook in ( ["on_epoch_start", "on__epoch_start"], ["on_epoch_end", "on__epoch_end"], ): if is_overridden(method_name=hook, instance=callback): rank_zero_deprecation( f"The `Callback.{hook}` hook was deprecated in v1.6 and" f" will be removed in v1.8. Please use `Callback.{alternative_hook}` instead." ) for hook in ("on_pretrain_routine_start", "on_pretrain_routine_end"): if is_overridden(method_name=hook, instance=callback): rank_zero_deprecation( f"The `Callback.{hook}` hook has been deprecated in v1.6 and" " will be removed in v1.8. Please use `Callback.on_fit_start` instead." ) def _check_precision_plugin_checkpoint_hooks(trainer: "pl.Trainer") -> None: if is_overridden(method_name="on_save_checkpoint", instance=trainer.precision_plugin, parent=PrecisionPlugin): rank_zero_deprecation( "`PrecisionPlugin.on_save_checkpoint` was deprecated in" " v1.6 and will be removed in v1.8. Use `state_dict` instead." ) if is_overridden(method_name="on_load_checkpoint", instance=trainer.precision_plugin, parent=PrecisionPlugin): rank_zero_deprecation( "`PrecisionPlugin.on_load_checkpoint` was deprecated in" " v1.6 and will be removed in v1.8. Use `load_state_dict` instead." ) def _check_datamodule_checkpoint_hooks(trainer: "pl.Trainer") -> None: if is_overridden(method_name="on_save_checkpoint", instance=trainer.datamodule): rank_zero_deprecation( "`LightningDataModule.on_save_checkpoint` was deprecated in" " v1.6 and will be removed in v1.8. Use `state_dict` instead." ) if is_overridden(method_name="on_load_checkpoint", instance=trainer.datamodule): rank_zero_deprecation( "`LightningDataModule.on_load_checkpoint` was deprecated in" " v1.6 and will be removed in v1.8. Use `load_state_dict` instead." )