# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE from pytorch_lightning.utilities.exceptions import MisconfigurationException if _FAIRSCALE_AVAILABLE: from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin): """Native AMP for Sharded Training.""" def __init__( self, precision: Union[str, int], device: str, scaler: Optional[torch.cuda.amp.GradScaler] = None ) -> None: if not _FAIRSCALE_AVAILABLE: raise MisconfigurationException( "You have asked for sharded AMP but you have not installed it." " Install `fairscale` using this guide: https://https://github.com/facebookresearch/fairscale" ) super().__init__(precision, device, scaler=scaler or ShardedGradScaler()) def clip_grad_by_norm(self, optimizer: "OSS", clip_val: Union[int, float]) -> None: optimizer.clip_grad_norm(clip_val)