# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _HPU_AVAILABLE if _HPU_AVAILABLE: from habana_frameworks.torch.hpex import hmp class HPUPrecisionPlugin(PrecisionPlugin): """Plugin that enables bfloat/half support on HPUs. Args: precision: The precision to use. opt_level: Choose optimization level for hmp. bf16_file_path: Path to bf16 ops list in hmp O1 mode. fp32_file_path: Path to fp32 ops list in hmp O1 mode. verbose: Enable verbose mode for hmp. """ def __init__( self, precision: Union[str, int], opt_level: str = "O2", bf16_file_path: Optional[str] = None, fp32_file_path: Optional[str] = None, verbose: bool = False, ) -> None: if not _HPU_AVAILABLE: raise MisconfigurationException("HPU precision plugin requires HPU devices.") supported_precision_values = (16, 32, "bf16") if precision not in supported_precision_values: raise ValueError( f"`Trainer(accelerator='hpu', precision={precision!r})` is not supported." f" `precision` must be one of: {supported_precision_values}." ) super().__init__() self.precision = precision hmp.convert( opt_level=opt_level, bf16_file_path=bf16_file_path, fp32_file_path=fp32_file_path, isVerbose=verbose )