# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Optional, Union from torch import Tensor from torch.nn import Module from torch.optim import LBFGS, Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.utilities import GradClipAlgorithmType from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _DEEPSPEED_AVAILABLE from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.warnings import WarningCache if _DEEPSPEED_AVAILABLE: from deepspeed import DeepSpeedEngine warning_cache = WarningCache() class DeepSpeedPrecisionPlugin(PrecisionPlugin): """Precision plugin for DeepSpeed integration.""" def __init__(self, precision: Union[str, int], amp_type: str, amp_level: Optional[str] = None) -> None: super().__init__() self.precision = precision self.amp_type = amp_type self.amp_level = amp_level def backward(self, model: "pl.LightningModule", closure_loss: Tensor, *args: Any, **kwargs: Any) -> None: if is_overridden("backward", model): warning_cache.warn( "You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles" " the backward logic internally." ) deepspeed_engine: DeepSpeedEngine = model.trainer.model deepspeed_engine.backward(closure_loss, *args, **kwargs) def _run_backward(self, tensor: Tensor, model: Optional["DeepSpeedEngine"], *args: Any, **kwargs: Any) -> None: if model is None: raise ValueError("Please provide the model as input to `backward`.") model.backward(tensor, *args, **kwargs) def optimizer_step( self, model: Union["pl.LightningModule", Module], optimizer: Optimizer, optimizer_idx: int, closure: Callable[[], Any], **kwargs: Any, ) -> Any: if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"DeepSpeed and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})." ) closure_result = closure() self._after_closure(model, optimizer, optimizer_idx) skipped_backward = closure_result is None # in manual optimization, the closure does not return a value if isinstance(model, pl.LightningModule) and model.automatic_optimization and skipped_backward: raise MisconfigurationException( "Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`" ) # DeepSpeed handles the optimizer step internally deepspeed_engine = model.trainer.model if isinstance(model, pl.LightningModule) else model return deepspeed_engine.step(**kwargs) def clip_gradients( self, optimizer: Optimizer, clip_val: Union[int, float] = 0.0, gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM, ) -> None: """DeepSpeed handles gradient clipping internally.""" def _track_grad_norm(self, trainer: "pl.Trainer") -> None: if trainer.track_grad_norm == -1: return # the gradients are not available in the model due to gradient partitioning in zero stage >= 2 warning_cache.warn( f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for DeepSpeed." " The setting will be ignored." )