# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import torch.distributed from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_9_1 from pytorch_lightning.utilities.rank_zero import rank_zero_deprecation, rank_zero_warn log = logging.getLogger(__name__) class TorchElasticEnvironment(ClusterEnvironment): """Environment for fault-tolerant and elastic training with `torchelastic `_""" def __init__(self) -> None: super().__init__() # TODO: remove in 1.7 if hasattr(self, "is_using_torchelastic") and callable(self.is_using_torchelastic): rank_zero_deprecation( f"`{self.__class__.__name__}.is_using_torchelastic` has been deprecated in v1.6 and will be removed in" " v1.7. Implement the static method `detect()` instead (do not forget to add the `@staticmethod`" " decorator)." ) @property def creates_processes_externally(self) -> bool: return True @property def main_address(self) -> str: if "MASTER_ADDR" not in os.environ: rank_zero_warn("MASTER_ADDR environment variable is not defined. Set as localhost") os.environ["MASTER_ADDR"] = "127.0.0.1" log.debug(f"MASTER_ADDR: {os.environ['MASTER_ADDR']}") return os.environ["MASTER_ADDR"] @property def main_port(self) -> int: if "MASTER_PORT" not in os.environ: rank_zero_warn("MASTER_PORT environment variable is not defined. Set as 12910") os.environ["MASTER_PORT"] = "12910" log.debug(f"MASTER_PORT: {os.environ['MASTER_PORT']}") return int(os.environ["MASTER_PORT"]) @staticmethod def detect() -> bool: """Returns ``True`` if the current process was launched using the torchelastic command.""" if _TORCH_GREATER_EQUAL_1_9_1: return torch.distributed.is_torchelastic_launched() required_env_vars = {"RANK", "GROUP_RANK", "LOCAL_RANK", "LOCAL_WORLD_SIZE"} return required_env_vars.issubset(os.environ.keys()) def world_size(self) -> int: return int(os.environ["WORLD_SIZE"]) def set_world_size(self, size: int) -> None: log.debug("TorchElasticEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.") def global_rank(self) -> int: return int(os.environ["RANK"]) def set_global_rank(self, rank: int) -> None: log.debug( "TorchElasticEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored." ) def local_rank(self) -> int: return int(os.environ["LOCAL_RANK"]) def node_rank(self) -> int: return int(os.environ.get("GROUP_RANK", 0))