# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from lightning.pytorch.core.module import LightningModule from torch import Tensor, nn from torch.utils.data import DataLoader, Dataset class DeterministicModel(LightningModule): def __init__(self, weights=None): super().__init__() self.training_step_called = False self.validation_step_called = False self.assert_backward = True self.l1 = nn.Linear(2, 3, bias=False) if weights is None: weights = torch.tensor([[4, 3, 5], [10, 11, 13]]).float() p = torch.nn.Parameter(weights, requires_grad=True) self.l1.weight = p def forward(self, x): return self.l1(x) def step(self, batch, batch_idx): x = batch bs = x.size(0) y_hat = self.l1(x) test_hat = y_hat.cpu().detach() assert torch.all(test_hat[:, 0] == 15.0) assert torch.all(test_hat[:, 1] == 42.0) out = y_hat.sum() assert out == (42.0 * bs) + (15.0 * bs) return out def count_num_graphs(self, result, num_graphs=0): for k, v in result.items(): if isinstance(v, Tensor) and v.grad_fn is not None: num_graphs += 1 if isinstance(v, dict): num_graphs += self.count_num_graphs(v) return num_graphs # ----------------------------- # DATA # ----------------------------- def train_dataloader(self): return DataLoader(DummyDataset(), batch_size=3, shuffle=False) def val_dataloader(self): return DataLoader(DummyDataset(), batch_size=3, shuffle=False) def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0) def configure_optimizers__lr_on_plateau_epoch(self): optimizer = torch.optim.Adam(self.parameters(), lr=0) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer) scheduler = {"scheduler": lr_scheduler, "interval": "epoch", "monitor": "epoch_end_log_1"} return [optimizer], [scheduler] def configure_optimizers__lr_on_plateau_step(self): optimizer = torch.optim.Adam(self.parameters(), lr=0) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer) scheduler = {"scheduler": lr_scheduler, "interval": "step", "monitor": "pbar_acc1"} return [optimizer], [scheduler] def backward(self, loss, *args, **kwargs): if self.assert_backward: if self.trainer.precision == "16-mixed": assert loss > 171 * 1000 else: assert loss == 171.0 return super().backward(loss, *args, **kwargs) class DummyDataset(Dataset): def __len__(self): return 12 def __getitem__(self, idx): return torch.tensor([0.5, 1.0, 2.0])