# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This example is largely adapted from https://github.com/pytorch/examples/blob/master/imagenet/main.py Before you can run this example, you will need to download the ImageNet dataset manually from the `official website `_ and place it into a folder `path/to/imagenet`. Train on ImageNet with default parameters: .. code-block: bash python imagenet.py --data-path /path/to/imagenet or show all options you can change: .. code-block: bash python imagenet.py --help """ import os from argparse import ArgumentParser, Namespace import torch import torch.nn.functional as F import torch.nn.parallel import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import torch.utils.data.distributed import torchvision.datasets as datasets import torchvision.models as models import torchvision.transforms as transforms import pytorch_lightning as pl from pl_examples import cli_lightning_logo from pytorch_lightning.core import LightningModule class ImageNetLightningModel(LightningModule): """ >>> ImageNetLightningModel(data_path='missing') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ImageNetLightningModel( (model): ResNet(...) ) """ # pull out resnet names from torchvision models MODEL_NAMES = sorted( name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name]) ) def __init__( self, data_path: str, arch: str = 'resnet18', pretrained: bool = False, lr: float = 0.1, momentum: float = 0.9, weight_decay: float = 1e-4, batch_size: int = 4, workers: int = 2, **kwargs, ): super().__init__() self.save_hyperparameters() self.arch = arch self.pretrained = pretrained self.lr = lr self.momentum = momentum self.weight_decay = weight_decay self.data_path = data_path self.batch_size = batch_size self.workers = workers self.model = models.__dict__[self.arch](pretrained=self.pretrained) def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): images, target = batch output = self(images) loss_train = F.cross_entropy(output, target) acc1, acc5 = self.__accuracy(output, target, topk=(1, 5)) self.log('train_loss', loss_train, on_step=True, on_epoch=True, logger=True) self.log('train_acc1', acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True) self.log('train_acc5', acc5, on_step=True, on_epoch=True, logger=True) return loss_train def validation_step(self, batch, batch_idx): images, target = batch output = self(images) loss_val = F.cross_entropy(output, target) acc1, acc5 = self.__accuracy(output, target, topk=(1, 5)) self.log('val_loss', loss_val, on_step=True, on_epoch=True) self.log('val_acc1', acc1, on_step=True, prog_bar=True, on_epoch=True) self.log('val_acc5', acc5, on_step=True, on_epoch=True) @staticmethod def __accuracy(output, target, topk=(1, )): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def configure_optimizers(self): optimizer = optim.SGD(self.parameters(), lr=self.lr, momentum=self.momentum, weight_decay=self.weight_decay) scheduler = lr_scheduler.LambdaLR(optimizer, lambda epoch: 0.1**(epoch // 30)) return [optimizer], [scheduler] def train_dataloader(self): normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ) train_dir = os.path.join(self.data_path, 'train') train_dataset = datasets.ImageFolder( train_dir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.workers, ) return train_loader def val_dataloader(self): normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ) val_dir = os.path.join(self.data_path, 'val') val_loader = torch.utils.data.DataLoader( datasets.ImageFolder( val_dir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ]) ), batch_size=self.batch_size, shuffle=False, num_workers=self.workers, ) return val_loader def test_dataloader(self): return self.val_dataloader() def test_step(self, *args, **kwargs): return self.validation_step(*args, **kwargs) def test_epoch_end(self, *args, **kwargs): outputs = self.validation_epoch_end(*args, **kwargs) def substitute_val_keys(out): return {k.replace('val', 'test'): v for k, v in out.items()} outputs = { 'test_loss': outputs['val_loss'], 'progress_bar': substitute_val_keys(outputs['progress_bar']), 'log': substitute_val_keys(outputs['log']), } return outputs @staticmethod def add_model_specific_args(parent_parser): # pragma: no-cover parser = ArgumentParser(parents=[parent_parser]) parser.add_argument( '-a', '--arch', metavar='ARCH', default='resnet18', choices=ImageNetLightningModel.MODEL_NAMES, help=('model architecture: ' + ' | '.join(ImageNetLightningModel.MODEL_NAMES) + ' (default: resnet18)') ) parser.add_argument( '-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)' ) parser.add_argument( '-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total batch size of all GPUs on the current node' ' when using Data Parallel or Distributed Data Parallel' ) parser.add_argument( '--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate', dest='lr' ) parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument( '--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay' ) parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') return parser def main(args: Namespace) -> None: if args.seed is not None: pl.seed_everything(args.seed) if args.accelerator == 'ddp': # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / max(1, args.gpus)) args.workers = int(args.workers / max(1, args.gpus)) model = ImageNetLightningModel(**vars(args)) trainer = pl.Trainer.from_argparse_args(args) if args.evaluate: trainer.test(model) else: trainer.fit(model) def run_cli(): parent_parser = ArgumentParser(add_help=False) parent_parser = pl.Trainer.add_argparse_args(parent_parser) parent_parser.add_argument('--data-path', metavar='DIR', type=str, help='path to dataset') parent_parser.add_argument( '-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set' ) parent_parser.add_argument('--seed', type=int, default=42, help='seed for initializing training.') parser = ImageNetLightningModel.add_model_specific_args(parent_parser) parser.set_defaults( profiler="simple", deterministic=True, max_epochs=90, ) args = parser.parse_args() main(args) if __name__ == '__main__': cli_lightning_logo() run_cli()