# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from distutils.version import LooseVersion import torch from torch.utils.data import DataLoader, IterableDataset from pytorch_lightning.utilities import rank_zero_warn def has_iterable_dataset(dataloader: DataLoader): return hasattr(dataloader, 'dataset') and isinstance(dataloader.dataset, IterableDataset) def has_len(dataloader: DataLoader) -> bool: """ Checks if a given Dataloader has __len__ method implemented i.e. if it is a finite dataloader or infinite dataloader. """ try: # try getting the length if len(dataloader) == 0: raise ValueError('`Dataloader` returned 0 length.' ' Please make sure that your Dataloader at least returns 1 batch') has_len = True except TypeError: has_len = False except NotImplementedError: # e.g. raised by torchtext if a batch_size_fn is used has_len = False if has_len and has_iterable_dataset(dataloader) and LooseVersion(torch.__version__) >= LooseVersion("1.4.0"): rank_zero_warn( 'Your `IterableDataset` has `__len__` defined.' ' In combination with multi-processing data loading (e.g. batch size > 1),' ' this can lead to unintended side effects since the samples will be duplicated.' ) return has_len