# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from multiprocessing import Event, Process import pytest from pytorch_lightning import Trainer from pytorch_lightning.profiler import XLAProfiler from pytorch_lightning.utilities import _TPU_AVAILABLE from tests.helpers import BoringModel from tests.helpers.runif import RunIf if _TPU_AVAILABLE: import torch_xla.debug.profiler as xp import torch_xla.utils.utils as xu @RunIf(tpu=True) def test_xla_profiler_instance(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, profiler="xla", tpu_cores=8) assert isinstance(trainer.profiler, XLAProfiler) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" @pytest.mark.skipif(True, reason="XLA Profiler doesn't support Prog. capture yet") def test_xla_profiler_prog_capture(tmpdir): port = xu.get_free_tcp_ports()[0] training_started = Event() def train_worker(): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=4, profiler="xla", tpu_cores=8) trainer.fit(model) p = Process(target=train_worker, daemon=True) p.start() training_started.wait(120) logdir = str(tmpdir) xp.trace(f"localhost:{port}", logdir, duration_ms=2000, num_tracing_attempts=5, delay_ms=1000) p.terminate() assert os.isfile(os.path.join(logdir, "plugins", "profile", "*", "*.xplane.pb"))