# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.nn import functional as F import pytorch_lightning as pl from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule class LitClassifier(pl.LightningModule): def __init__(self, hidden_dim: int = 128, learning_rate: float = 0.0001): super().__init__() self.save_hyperparameters() self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim) self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10) def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.l1(x)) x = torch.relu(self.l2(x)) return x def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def validation_step(self, batch, batch_idx): x, y = batch probs = self(x) # we currently return the accuracy as the validation_step/test_step is run on the IPU devices. # Outputs from the step functions are sent to the host device, where we calculate the metrics in # validation_epoch_end and test_epoch_end for the test_step. acc = self.accuracy(probs, y) return acc def test_step(self, batch, batch_idx): x, y = batch logits = self(x) acc = self.accuracy(logits, y) return acc def accuracy(self, logits, y): # currently IPU poptorch doesn't implicit convert bools to tensor # hence we use an explicit calculation for accuracy here. Once fixed in poptorch # we can use the accuracy metric. acc = torch.sum(torch.eq(torch.argmax(logits, -1), y).to(torch.float32)) / len(y) return acc def validation_epoch_end(self, outputs) -> None: # since the training step/validation step and test step are run on the IPU device # we must log the average loss outside the step functions. self.log("val_acc", torch.stack(outputs).mean(), prog_bar=True) def test_epoch_end(self, outputs) -> None: self.log("test_acc", torch.stack(outputs).mean()) def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) if __name__ == "__main__": dm = MNISTDataModule(batch_size=32) model = LitClassifier() trainer = pl.Trainer(max_epochs=2, ipus=8) trainer.fit(model, datamodule=dm) trainer.test(model, datamodule=dm)