import numbers from functools import partial import numpy as np import pytest import torch from sklearn.metrics import ( accuracy_score as sk_accuracy, precision_score as sk_precision, recall_score as sk_recall, f1_score as sk_f1_score, fbeta_score as sk_fbeta_score, confusion_matrix as sk_confusion_matrix, average_precision_score as sk_average_precision, auc as sk_auc, precision_recall_curve as sk_precision_recall_curve, roc_curve as sk_roc_curve, roc_auc_score as sk_roc_auc_score, ) from pytorch_lightning.metrics.converters import _convert_to_numpy from pytorch_lightning.metrics.sklearns import ( Accuracy, AveragePrecision, AUC, ConfusionMatrix, F1, FBeta, Precision, Recall, PrecisionRecallCurve, ROC, AUROC ) from pytorch_lightning.utilities.apply_func import apply_to_collection def _xy_only(func): def new_func(*args, **kwargs): return np.array(func(*args, **kwargs)[:2]) return new_func @pytest.mark.parametrize(['metric_class', 'sklearn_func', 'inputs'], [ pytest.param(Accuracy(), sk_accuracy, {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, id='Accuracy'), pytest.param(AUC(), sk_auc, {'x': torch.arange(10, dtype=torch.float) / 10, 'y': torch.tensor([0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.5, 0.6, 0.7])}, id='AUC'), pytest.param(AveragePrecision(), sk_average_precision, {'y_score': torch.randint(2, size=(128,)), 'y_true': torch.randint(2, size=(128,))}, id='AveragePrecision'), pytest.param(ConfusionMatrix(), sk_confusion_matrix, {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, id='ConfusionMatrix'), pytest.param(F1(average='macro'), partial(sk_f1_score, average='macro'), {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, id='F1'), pytest.param(FBeta(beta=0.5, average='macro'), partial(sk_fbeta_score, beta=0.5, average='macro'), {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, id='FBeta'), pytest.param(Precision(average='macro'), partial(sk_precision, average='macro'), {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, id='Precision'), pytest.param(Recall(average='macro'), partial(sk_recall, average='macro'), {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, id='Recall'), pytest.param(PrecisionRecallCurve(), _xy_only(sk_precision_recall_curve), {'probas_pred': torch.rand(size=(128,)), 'y_true': torch.randint(2, size=(128,))}, id='PrecisionRecallCurve'), pytest.param(ROC(), _xy_only(sk_roc_curve), {'y_score': torch.rand(size=(128,)), 'y_true': torch.randint(2, size=(128,))}, id='ROC'), pytest.param(AUROC(), sk_roc_auc_score, {'y_score': torch.rand(size=(128,)), 'y_true': torch.randint(2, size=(128,))}, id='AUROC'), ]) def test_sklearn_metric(metric_class, sklearn_func, inputs): numpy_inputs = apply_to_collection(inputs, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy) sklearn_result = sklearn_func(**numpy_inputs) lightning_result = metric_class(**inputs) assert np.allclose(sklearn_result, lightning_result, atol=1e-5) sklearn_result = apply_to_collection( sklearn_result, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy) lightning_result = apply_to_collection( lightning_result, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy) assert np.allclose(sklearn_result, lightning_result, atol=1e-5) assert isinstance(lightning_result, type(sklearn_result))