import os from unittest import mock import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.plugins import NativeMixedPrecisionPlugin from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf @RunIf(amp_native=True) @mock.patch.dict( os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0" } ) @mock.patch('torch.cuda.device_count', return_value=2) @pytest.mark.parametrize( ['ddp_backend', 'gpus'], [('ddp', 2), ('ddp2', 2), ('ddp_spawn', 2)], ) def test_amp_choice_custom_ddp_cpu(device_count_mock, ddp_backend, gpus): class MyNativeAMP(NativeMixedPrecisionPlugin): pass trainer = Trainer( precision=16, amp_backend='native', accelerator=ddp_backend, plugins=[MyNativeAMP()], ) assert isinstance(trainer.precision_plugin, MyNativeAMP) class GradientUnscaleBoringModel(BoringModel): def on_after_backward(self): norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2) if not (torch.isinf(norm) or torch.isnan(norm)): assert norm.item() < 15. @RunIf(min_gpus=2, amp_native=True) def test_amp_gradient_unscale(tmpdir): model = GradientUnscaleBoringModel() trainer = Trainer( max_epochs=2, default_root_dir=os.getcwd(), limit_train_batches=2, limit_test_batches=2, limit_val_batches=2, amp_backend='native', accelerator='ddp_spawn', gpus=2, precision=16, track_grad_norm=2, log_every_n_steps=1, ) trainer.fit(model) class UnscaleAccumulateGradBatchesBoringModel(BoringModel): def on_after_backward(self): norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2) if not (torch.isinf(norm) or torch.isnan(norm)): assert norm.item() < 15. @RunIf(min_gpus=2, amp_native=True) def test_amp_gradient_unscale_accumulate_grad_batches(tmpdir): model = UnscaleAccumulateGradBatchesBoringModel() trainer = Trainer( max_epochs=2, default_root_dir=os.getcwd(), limit_train_batches=2, limit_test_batches=2, limit_val_batches=2, amp_backend='native', accelerator='ddp_spawn', gpus=2, precision=16, track_grad_norm=2, log_every_n_steps=1, accumulate_grad_batches=2, ) trainer.fit(model)