.. testsetup:: * from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.core.lightning import LightningModule .. _loggers: ******* Loggers ******* Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...). TensorBoard is used by default, but you can pass to the :class:`~pytorch_lightning.trainer.trainer.Trainer` any combination of the following loggers. .. note:: All loggers log by default to `os.getcwd()`. To change the path without creating a logger set `Trainer(default_root_dir='/your/path/to/save/checkpoints')` Read more about :doc:`logging <../extensions/logging>` options. To log arbitrary artifacts like images or audio samples use the `trainer.log_dir` property to resolve the path. .. code-block:: python def training_step(self, batch, batch_idx): img = ... log_image(img, self.trainer.log_dir) Comet.ml ======== `Comet.ml `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install comet-ml Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: import os from pytorch_lightning.loggers import CometLogger comet_logger = CometLogger( api_key=os.environ.get('COMET_API_KEY'), workspace=os.environ.get('COMET_WORKSPACE'), # Optional save_dir='.', # Optional project_name='default_project', # Optional rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional experiment_name='default' # Optional ) trainer = Trainer(logger=comet_logger) The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.CometLogger` docs. ---------------- MLflow ====== `MLflow `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install mlflow Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. code-block:: python from pytorch_lightning.loggers import MLFlowLogger mlf_logger = MLFlowLogger( experiment_name="default", tracking_uri="file:./ml-runs" ) trainer = Trainer(logger=mlf_logger) .. seealso:: :class:`~pytorch_lightning.loggers.MLFlowLogger` docs. ---------------- Neptune.ai ========== `Neptune.ai `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install neptune-client Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: from pytorch_lightning.loggers import NeptuneLogger neptune_logger = NeptuneLogger( api_key='ANONYMOUS', # replace with your own project_name='shared/pytorch-lightning-integration', experiment_name='default', # Optional, params={'max_epochs': 10}, # Optional, tags=['pytorch-lightning', 'mlp'], # Optional, ) trainer = Trainer(logger=neptune_logger) The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.NeptuneLogger` docs. ---------------- Tensorboard =========== To use `TensorBoard `_ as your logger do the following. .. testcode:: from pytorch_lightning.loggers import TensorBoardLogger logger = TensorBoardLogger('tb_logs', name='my_model') trainer = Trainer(logger=logger) The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.TensorBoardLogger` docs. ---------------- Test Tube ========= `Test Tube `_ is a `TensorBoard `_ logger but with nicer file structure. To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install test_tube Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. code-block:: python from pytorch_lightning.loggers import TestTubeLogger logger = TestTubeLogger('tb_logs', name='my_model') trainer = Trainer(logger=logger) The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.TestTubeLogger` docs. ---------------- Weights and Biases ================== `Weights and Biases `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install wandb Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. code-block:: python from pytorch_lightning.loggers import WandbLogger # instrument experiment with W&B wandb_logger = WandbLogger(project='MNIST', log_model='all') trainer = Trainer(logger=wandb_logger) # log gradients and model topology wandb_logger.watch(model) The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.log({ "generated_images": [wandb.Image(some_img, caption="...")] }) .. seealso:: :class:`~pytorch_lightning.loggers.WandbLogger` docs. ---------------- Multiple Loggers ================ Lightning supports the use of multiple loggers, just pass a list to the :class:`~pytorch_lightning.trainer.trainer.Trainer`. .. code-block:: python from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger logger1 = TensorBoardLogger('tb_logs', name='my_model') logger2 = TestTubeLogger('tb_logs', name='my_model') trainer = Trainer(logger=[logger1, logger2]) The loggers are available as a list anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() # Option 1 self.logger.experiment[0].add_image('generated_images', some_img, 0) # Option 2 self.logger[0].experiment.add_image('generated_images', some_img, 0)