import os import pickle import platform import re from pathlib import Path import cloudpickle import pytest import tests.base.develop_utils as tutils import torch from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from tests.base import EvalModelTemplate @pytest.mark.parametrize("save_top_k", [-1, 0, 1, 2]) def test_model_checkpoint_with_non_string_input(tmpdir, save_top_k): """Test that None in checkpoint callback is valid and that ckpt_path is set correctly""" tutils.reset_seed() model = EvalModelTemplate() checkpoint = ModelCheckpoint(filepath=None, save_top_k=save_top_k) trainer = Trainer( default_root_dir=tmpdir, checkpoint_callback=checkpoint, overfit_batches=0.20, max_epochs=2, ) trainer.fit(model) assert ( checkpoint.dirpath == tmpdir / trainer.logger.name / "version_0" / "checkpoints" ) @pytest.mark.parametrize( "logger_version,expected", [(None, "version_0"), (1, "version_1"), ("awesome", "awesome")], ) def test_model_checkpoint_path(tmpdir, logger_version, expected): """Test that "version_" prefix is only added when logger's version is an integer""" tutils.reset_seed() model = EvalModelTemplate() logger = TensorBoardLogger(str(tmpdir), version=logger_version) trainer = Trainer( default_root_dir=tmpdir, overfit_batches=0.2, max_epochs=2, logger=logger ) trainer.fit(model) ckpt_version = Path(trainer.checkpoint_callback.dirpath).parent.name assert ckpt_version == expected def test_pickling(tmpdir): ckpt = ModelCheckpoint(tmpdir) ckpt_pickled = pickle.dumps(ckpt) ckpt_loaded = pickle.loads(ckpt_pickled) assert vars(ckpt) == vars(ckpt_loaded) ckpt_pickled = cloudpickle.dumps(ckpt) ckpt_loaded = cloudpickle.loads(ckpt_pickled) assert vars(ckpt) == vars(ckpt_loaded) class ModelCheckpointTestInvocations(ModelCheckpoint): # this class has to be defined outside the test function, otherwise we get pickle error # due to the way ddp process is launched def __init__(self, expected_count, *args, **kwargs): super().__init__(*args, **kwargs) self.count = 0 self.expected_count = expected_count def _save_model(self, filepath, trainer, pl_module): # make sure we don't save twice assert not os.path.isfile(filepath) self.count += 1 super()._save_model(filepath, trainer, pl_module) def on_train_end(self, trainer, pl_module): super().on_train_end(trainer, pl_module) # on rank 0 we expect the saved files and on all others no saves assert (trainer.global_rank == 0 and self.count == self.expected_count) or ( trainer.global_rank > 0 and self.count == 0 ) @pytest.mark.skipif( platform.system() == "Windows", reason="Distributed training is not supported on Windows", ) def test_model_checkpoint_no_extraneous_invocations(tmpdir): """Test to ensure that the model callback saves the checkpoints only once in distributed mode.""" model = EvalModelTemplate() num_epochs = 4 model_checkpoint = ModelCheckpointTestInvocations( expected_count=num_epochs, save_top_k=-1 ) trainer = Trainer( distributed_backend="ddp_cpu", num_processes=2, default_root_dir=tmpdir, early_stop_callback=False, checkpoint_callback=model_checkpoint, max_epochs=num_epochs, ) result = trainer.fit(model) assert 1 == result def test_model_checkpoint_format_checkpoint_name(tmpdir): # empty filename: ckpt_name = ModelCheckpoint._format_checkpoint_name('', 3, {}) assert ckpt_name == 'epoch=3' ckpt_name = ModelCheckpoint._format_checkpoint_name(None, 3, {}, prefix='test') assert ckpt_name == 'test-epoch=3' # no groups case: ckpt_name = ModelCheckpoint._format_checkpoint_name('ckpt', 3, {}, prefix='test') assert ckpt_name == 'test-ckpt' # no prefix ckpt_name = ModelCheckpoint._format_checkpoint_name('{epoch:03d}-{acc}', 3, {'acc': 0.03}) assert ckpt_name == 'epoch=003-acc=0.03' # prefix char_org = ModelCheckpoint.CHECKPOINT_JOIN_CHAR ModelCheckpoint.CHECKPOINT_JOIN_CHAR = '@' ckpt_name = ModelCheckpoint._format_checkpoint_name('{epoch},{acc:.5f}', 3, {'acc': 0.03}, prefix='test') assert ckpt_name == 'test@epoch=3,acc=0.03000' ModelCheckpoint.CHECKPOINT_JOIN_CHAR = char_org # no filepath set ckpt_name = ModelCheckpoint(filepath=None).format_checkpoint_name(3, {}) assert ckpt_name == 'epoch=3.ckpt' ckpt_name = ModelCheckpoint(filepath='').format_checkpoint_name(5, {}) assert ckpt_name == 'epoch=5.ckpt' # CWD ckpt_name = ModelCheckpoint(filepath='.').format_checkpoint_name(3, {}) assert Path(ckpt_name) == Path('.') / 'epoch=3.ckpt' # dir does not exist so it is used as filename filepath = tmpdir / 'dir' ckpt_name = ModelCheckpoint(filepath=filepath, prefix='test').format_checkpoint_name(3, {}) assert ckpt_name == tmpdir / 'test-dir.ckpt' # now, dir exists os.mkdir(filepath) ckpt_name = ModelCheckpoint(filepath=filepath, prefix='test').format_checkpoint_name(3, {}) assert ckpt_name == filepath / 'test-epoch=3.ckpt' # with ver ckpt_name = ModelCheckpoint(filepath=tmpdir / 'name', prefix='test').format_checkpoint_name(3, {}, ver=3) assert ckpt_name == tmpdir / 'test-name-v3.ckpt' def test_model_checkpoint_save_last(tmpdir): """Tests that save_last produces only one last checkpoint.""" model = EvalModelTemplate() epochs = 3 ModelCheckpoint.CHECKPOINT_NAME_LAST = 'last-{epoch}' model_checkpoint = ModelCheckpoint(filepath=tmpdir, save_top_k=-1, save_last=True) trainer = Trainer( default_root_dir=tmpdir, early_stop_callback=False, checkpoint_callback=model_checkpoint, max_epochs=epochs, ) trainer.fit(model) last_filename = model_checkpoint._format_checkpoint_name(ModelCheckpoint.CHECKPOINT_NAME_LAST, epochs - 1, {}) last_filename = last_filename + '.ckpt' assert str(tmpdir / last_filename) == model_checkpoint.last_model_path assert set(os.listdir(tmpdir)) == set( [f'epoch={i}.ckpt' for i in range(epochs)] + [last_filename, 'lightning_logs'] ) ModelCheckpoint.CHECKPOINT_NAME_LAST = 'last' def test_model_checkpoint_save_last_checkpoint_contents(tmpdir): """Tests that the save_last checkpoint contains the latest information.""" seed_everything(100) model = EvalModelTemplate() num_epochs = 3 model_checkpoint = ModelCheckpoint(filepath=tmpdir, save_top_k=num_epochs, save_last=True) trainer = Trainer( default_root_dir=tmpdir, early_stop_callback=False, checkpoint_callback=model_checkpoint, max_epochs=num_epochs, ) trainer.fit(model) path_last_epoch = model_checkpoint.format_checkpoint_name(num_epochs - 1, {}) assert path_last_epoch != model_checkpoint.last_model_path ckpt_last_epoch = torch.load(path_last_epoch) ckpt_last = torch.load(model_checkpoint.last_model_path) assert all(ckpt_last_epoch[k] == ckpt_last[k] for k in ("epoch", "global_step")) assert all( ckpt_last["callbacks"][type(model_checkpoint)][k] == ckpt_last_epoch["callbacks"][type(model_checkpoint)][k] for k in ("best_model_score", "best_model_path") ) # it is easier to load the model objects than to iterate over the raw dict of tensors model_last_epoch = EvalModelTemplate.load_from_checkpoint(path_last_epoch) model_last = EvalModelTemplate.load_from_checkpoint(model_checkpoint.last_model_path) for w0, w1 in zip(model_last_epoch.parameters(), model_last.parameters()): assert w0.eq(w1).all() def test_ckpt_metric_names(tmpdir): model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, gradient_clip_val=1.0, overfit_batches=0.20, progress_bar_refresh_rate=0, limit_train_batches=0.01, limit_val_batches=0.01, checkpoint_callback=ModelCheckpoint(filepath=tmpdir + "/{val_loss:.2f}"), ) trainer.fit(model) # make sure the checkpoint we saved has the metric in the name ckpts = os.listdir(tmpdir) ckpts = [x for x in ckpts if "val_loss" in x] assert len(ckpts) == 1 val = re.sub("[^0-9.]", "", ckpts[0]) assert len(val) > 3 def test_ckpt_metric_names_results(tmpdir): model = EvalModelTemplate() model.training_step = model.training_step_result_obj model.training_step_end = None model.training_epoch_end = None model.validation_step = model.validation_step_result_obj model.validation_step_end = None model.validation_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, gradient_clip_val=1.0, overfit_batches=0.20, progress_bar_refresh_rate=0, limit_train_batches=0.01, limit_val_batches=0.01, checkpoint_callback=ModelCheckpoint(filepath=tmpdir + "/{val_loss:.2f}"), ) trainer.fit(model) # make sure the checkpoint we saved has the metric in the name ckpts = os.listdir(tmpdir) ckpts = [x for x in ckpts if "val_loss" in x] assert len(ckpts) == 1 val = re.sub("[^0-9.]", "", ckpts[0]) assert len(val) > 3