import os import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import GPUStatsMonitor from pytorch_lightning.loggers import CSVLogger from pytorch_lightning.loggers.csv_logs import ExperimentWriter from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_gpu_stats_monitor(tmpdir): """ Test GPU stats are logged using a logger. """ model = EvalModelTemplate() gpu_stats = GPUStatsMonitor() logger = CSVLogger(tmpdir) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, gpus=1, callbacks=[gpu_stats], logger=logger ) results = trainer.fit(model) assert results path_csv = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE) with open(path_csv, 'r') as fp: lines = fp.readlines() header = lines[0].split() fields = [ 'utilization.gpu', 'memory.used', 'memory.free', 'utilization.memory' ] for f in fields: assert any([f in h for h in header]) @pytest.mark.skipif(torch.cuda.is_available(), reason="test requires CPU machine") def test_gpu_stats_monitor_cpu_machine(tmpdir): """ Test GPUStatsMonitor on CPU machine. """ with pytest.raises(MisconfigurationException, match='NVIDIA driver is not installed'): gpu_stats = GPUStatsMonitor() @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_gpu_stats_monitor_no_logger(tmpdir): """ Test GPUStatsMonitor with no logger in Trainer. """ model = EvalModelTemplate() gpu_stats = GPUStatsMonitor() trainer = Trainer( default_root_dir=tmpdir, callbacks=[gpu_stats], max_epochs=1, gpus=1, logger=None ) with pytest.raises(MisconfigurationException, match='Trainer that has no logger.'): trainer.fit(model) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_gpu_stats_monitor_no_gpu_warning(tmpdir): """ Test GPUStatsMonitor raises a warning when not training on GPU device. """ model = EvalModelTemplate() gpu_stats = GPUStatsMonitor() trainer = Trainer( default_root_dir=tmpdir, callbacks=[gpu_stats], max_steps=1, gpus=None ) with pytest.raises(MisconfigurationException, match='not running on GPU'): trainer.fit(model)