# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import pytest import torch from pytorch_lightning.utilities.imports import _DALI_AVAILABLE, _IS_WINDOWS ARGS_DEFAULT = ( "--trainer.default_root_dir %(tmpdir)s " "--trainer.max_epochs 1 " "--trainer.limit_train_batches 2 " "--trainer.limit_val_batches 2 " "--trainer.limit_test_batches 2 " "--trainer.limit_predict_batches 2 " "--data.batch_size 32 " ) ARGS_GPU = ARGS_DEFAULT + "--trainer.accelerator gpu --trainer.devices 1 " @pytest.mark.skipif(not _DALI_AVAILABLE, reason="Nvidia DALI required") @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA required") @pytest.mark.skipif(_IS_WINDOWS, reason="Not supported on Windows") @pytest.mark.parametrize("cli_args", [ARGS_GPU]) def test_examples_mnist_dali(tmpdir, cli_args): from examples.pl_integrations.dali_image_classifier import cli_main # update the temp dir cli_args = cli_args % {"tmpdir": tmpdir} with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()): cli_main()