.. testsetup:: * import torch from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.core.lightning import LightningModule class LitMNIST(LightningModule): def __init__(self): super().__init__() def train_dataloader(): pass def val_dataloader(): pass Child Modules ------------- Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance. For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images. Recall that `LitMNIST` already defines all the dataloading etc... The only things that change in the `Autoencoder` model are the init, forward, training, validation and test step. .. testcode:: class Encoder(torch.nn.Module): pass class Decoder(torch.nn.Module): pass class AutoEncoder(LitMNIST): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, x): generated = self.decoder(x) return generated def training_step(self, batch, batch_idx): x, _ = batch representation = self.encoder(x) x_hat = self(representation) loss = MSE(x, x_hat) return loss def validation_step(self, batch, batch_idx): return self._shared_eval(batch, batch_idx, 'val') def test_step(self, batch, batch_idx): return self._shared_eval(batch, batch_idx, 'test') def _shared_eval(self, batch, batch_idx, prefix): x, y = batch representation = self.encoder(x) x_hat = self(representation) loss = F.nll_loss(logits, y) return {f'{prefix}_loss': loss} and we can train this using the same trainer .. code-block:: python autoencoder = AutoEncoder() trainer = Trainer() trainer.fit(autoencoder) And remember that the forward method is to define the practical use of a LightningModule. In this case, we want to use the `AutoEncoder` to extract image representations .. code-block:: python some_images = torch.Tensor(32, 1, 28, 28) representations = autoencoder(some_images)