# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional from torch.utils.data import DataLoader, random_split from torch.utils.data.distributed import DistributedSampler from pytorch_lightning.core.datamodule import LightningDataModule from tests.base.datasets import MNIST, TrialMNIST class TrialMNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = "./"): super().__init__() self.data_dir = data_dir self.non_picklable = None self.checkpoint_state: Optional[str] = None def prepare_data(self): TrialMNIST(self.data_dir, train=True, download=True) TrialMNIST(self.data_dir, train=False, download=True) def setup(self, stage: Optional[str] = None): if stage == "fit" or stage is None: mnist_full = TrialMNIST( root=self.data_dir, train=True, num_samples=64, download=True ) self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64]) self.dims = self.mnist_train[0][0].shape if stage == "test" or stage is None: self.mnist_test = TrialMNIST( root=self.data_dir, train=False, num_samples=64, download=True ) self.dims = getattr(self, "dims", self.mnist_test[0][0].shape) self.non_picklable = lambda x: x ** 2 def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=32) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=32) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=32) def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: checkpoint[self.__class__.__name__] = self.__class__.__name__ def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.checkpoint_state = checkpoint.get(self.__class__.__name__) class MNISTDataModule(LightningDataModule): def __init__( self, data_dir: str = "./", batch_size: int = 32, dist_sampler: bool = False ) -> None: super().__init__() self.dist_sampler = dist_sampler self.data_dir = data_dir self.batch_size = batch_size # self.dims is returned when you call dm.size() # Setting default dims here because we know them. # Could optionally be assigned dynamically in dm.setup() self.dims = (1, 28, 28) def prepare_data(self): # download only MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081)) MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081)) def setup(self, stage: Optional[str] = None): # Assign train/val datasets for use in dataloaders # TODO: need to split using random_split once updated to torch >= 1.6 if stage == "fit" or stage is None: self.mnist_train = MNIST( self.data_dir, train=True, normalize=(0.1307, 0.3081) ) # Assign test dataset for use in dataloader(s) if stage == "test" or stage is None: self.mnist_test = MNIST( self.data_dir, train=False, normalize=(0.1307, 0.3081) ) def train_dataloader(self): dist_sampler = None if self.dist_sampler: dist_sampler = DistributedSampler(self.mnist_train, shuffle=False) return DataLoader( self.mnist_train, batch_size=self.batch_size, sampler=dist_sampler, shuffle=False, ) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size, shuffle=False)