# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import platform import time from typing import Type, Union import pytest import torch from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.plugins.ddp_plugin import DDPPlugin from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE, _NATIVE_AMP_AVAILABLE from tests.backends import DDPLauncher from tests.base.boring_model import BoringModel, RandomDataset @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_one_gpu(): plugin_parity_test( gpus=1, accelerator='ddp_spawn', plugin=DDPShardedPlugin(), model_cls=SeedTrainLoaderModel, ) @pytest.mark.skipif(not _NATIVE_AMP_AVAILABLE, reason="Requires native AMP") @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_amp_one_gpu(): plugin_parity_test( gpus=1, precision=16, accelerator='ddp_spawn', plugin=DDPShardedPlugin(), model_cls=SeedTrainLoaderModel, ) @pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_multi_gpu(): plugin_parity_test( gpus=2, accelerator='ddp_spawn', plugin=DDPShardedPlugin(), model_cls=SeedTrainLoaderModel, max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers ) @pytest.mark.skipif(not _NATIVE_AMP_AVAILABLE, reason="Requires native AMP") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_amp_multi_gpu(): plugin_parity_test( gpus=2, precision=16, accelerator='ddp_spawn', plugin=DDPShardedPlugin(), model_cls=SeedTrainLoaderModel, max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers ) @pytest.mark.skipif(not _NATIVE_AMP_AVAILABLE, reason="Requires native AMP") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_string_sharded_plugin_correctness_amp_multi_gpu(): plugin_parity_test( gpus=2, precision=16, accelerator='ddp_spawn', plugin='ddp_sharded', model_cls=SeedTrainLoaderModel, max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers ) @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(not os.getenv("PL_RUNNING_SPECIAL_TESTS", '0') == '1', reason="test should be run outside of pytest") @DDPLauncher.run("--accelerator ddp --gpus 2 --precision 32") def test_ddp_sharded_plugin_correctness_multi_gpu_ddp(tmpdir, args=None): plugin_parity_test( gpus=args.gpus, precision=args.precision, accelerator=args.accelerator, plugin=DDPShardedPlugin(), model_cls=SeedTrainLoaderModel, ) @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(not os.getenv("PL_RUNNING_SPECIAL_TESTS", '0') == '1', reason="test should be run outside of pytest") @DDPLauncher.run("--accelerator ddp --gpus 2 --precision 16") def test_ddp_sharded_plugin_correctness_amp_multi_gpu_ddp(tmpdir, args=None): plugin_parity_test( gpus=args.gpus, precision=args.precision, accelerator=args.accelerator, plugin=DDPShardedPlugin(), model_cls=SeedTrainLoaderModel, ) @pytest.mark.skip(reason="Current issue with multiple optimizers and FairScale.") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim(): """ Ensures same results using multiple optimizers across multiple GPUs """ plugin_parity_test( plugin=DDPShardedPlugin(), gpus=2, accelerator='ddp_spawn', model_cls=SeedTrainLoaderMultipleOptimizersModel, max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers ) @pytest.mark.skip(reason="Current issue with multiple optimizers and FairScale.") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir): """ Ensures using multiple optimizers across multiple GPUs with manual optimization """ plugin_parity_test( plugin=DDPShardedPlugin(), gpus=2, accelerator='ddp_spawn', model_cls=SeedTrainLoaderManualModel, max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers ) class SeedTrainLoaderModel(BoringModel): """ Overrides training loader to ensure we enforce the same seed for all DDP processes. """ def train_dataloader(self): seed_everything(42) return torch.utils.data.DataLoader(RandomDataset(32, 64)) class SeedTrainLoaderManualModel(SeedTrainLoaderModel): def training_step(self, batch, batch_idx, optimizer_idx): # manual # access your optimizers with use_pl_optimizer=False. Default is True (opt_a, opt_b) = self.optimizers(use_pl_optimizer=True) loss_1 = self.step(batch) self.manual_backward(loss_1, opt_a) opt_a.step() # fake discriminator loss_2 = self.step(batch[0]) # ensure we forward the correct params to the optimizer # without retain_graph we can't do multiple backward passes self.manual_backward(loss_2, opt_b) # todo: understand why synchronization breaks there. # self.manual_backward(loss_2, opt_a, retain_graph=True) opt_b.step() assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0) def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 @property def automatic_optimization(self) -> bool: return False class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel): def training_step(self, batch, batch_idx, optimizer_idx): output = self.layer(batch) loss = self.loss(batch, output) return {"loss": loss} def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 def record_ddp_fit_model_stats(trainer, model, use_cuda): """ Helper to calculate wall clock time for fit + max allocated memory. Args: trainer: The trainer object. model: The model to fit. use_cuda: Whether to sync CUDA kernels. Returns: Max Memory if using GPUs, and total wall clock time. """ max_memory = None time_start = time.perf_counter() if use_cuda: torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() trainer.fit(model) if use_cuda: torch.cuda.synchronize() max_memory = torch.cuda.max_memory_allocated() / 2 ** 20 total_time = time.perf_counter() - time_start return max_memory, total_time def plugin_parity_test( model_cls: Type[SeedTrainLoaderModel], plugin: Union[str, DDPPlugin], seed: int = 42, accelerator: str = 'ddp_spawn', gpus: int = 0, precision: int = 32, max_percent_speed_diff: float = 0.1, ): """ Ensures that the trained model is identical to the standard DDP implementation. Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate. Args: model_cls: Model class to use for test. plugin: Plugin to parity test. seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process. accelerator: Accelerator type for test. gpus: Number of GPUS to enable. precision: Whether to use AMP or normal FP32 training. max_percent_speed_diff: The maximum speed difference compared to normal DDP training. This is more a safety net for variability in CI which can vary in speed, not for benchmarking. """ # Train normal DDP seed_everything(seed) ddp_model = model_cls() use_cuda = gpus > 0 trainer = Trainer( fast_dev_run=True, max_epochs=1, gpus=gpus, precision=precision, accelerator=accelerator, ) max_memory_ddp, ddp_time = record_ddp_fit_model_stats( trainer=trainer, model=ddp_model, use_cuda=use_cuda ) # Reset and train Custom DDP seed_everything(seed) custom_plugin_model = model_cls() trainer = Trainer( fast_dev_run=True, max_epochs=1, gpus=gpus, precision=precision, accelerator=accelerator, plugins=[plugin], ) max_memory_custom, custom_model_time = record_ddp_fit_model_stats( trainer=trainer, model=custom_plugin_model, use_cuda=use_cuda ) # Assert model parameters are identical after fit for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()): assert torch.equal(ddp_param, custom_param), 'Model parameters are different between DDP and Custom plugin' # Assert speed parity by ensuring percentage difference between custom/ddp is below threshold percent_diff = (custom_model_time - ddp_time) / custom_model_time assert percent_diff <= max_percent_speed_diff, \ f'Custom DDP plugin was too slow compared to DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}' if use_cuda: # Assert CUDA memory parity assert max_memory_custom <= max_memory_ddp, \ f'Custom plugin used too much memory compared to DDP,' \ f'Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}'