# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from pytorch_lightning import Trainer from tests.base.boring_model import BoringModel @mock.patch('pytorch_lightning.core.hooks.ModelHooks.on_validation_model_eval') @mock.patch('pytorch_lightning.core.hooks.ModelHooks.on_validation_model_train') @mock.patch('pytorch_lightning.core.hooks.ModelHooks.on_test_model_eval') @mock.patch('pytorch_lightning.core.hooks.ModelHooks.on_test_model_train') def test_eval_train_calls(test_train_mock, test_eval_mock, val_train_mock, val_eval_mock, tmpdir): """ Tests that only training_step can be used """ model = BoringModel() model.validation_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=2, log_every_n_steps=1, weights_summary=None, ) trainer.fit(model) trainer.test() # sanity + 2 epochs assert val_eval_mock.call_count == 3 assert val_train_mock.call_count == 3 # test is called only once assert test_eval_mock.call_count == 1 assert test_train_mock.call_count == 1