# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import platform import pytest import torch from pytorch_lightning import Trainer from tests.base import BoringModel def test_model_torch_save(tmpdir): """Test to ensure torch save does not fail for model and trainer.""" model = BoringModel() num_epochs = 1 trainer = Trainer( default_root_dir=tmpdir, max_epochs=num_epochs, ) temp_path = os.path.join(tmpdir, 'temp.pt') trainer.fit(model) # Ensure these do not fail torch.save(trainer.model, temp_path) torch.save(trainer, temp_path) trainer = torch.load(temp_path) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") def test_model_torch_save_ddp_cpu(tmpdir): """Test to ensure torch save does not fail for model and trainer using cpu ddp.""" model = BoringModel() num_epochs = 1 trainer = Trainer( default_root_dir=tmpdir, max_epochs=num_epochs, accelerator="ddp_cpu", num_processes=2, ) temp_path = os.path.join(tmpdir, 'temp.pt') trainer.fit(model) # Ensure these do not fail torch.save(trainer.model, temp_path) torch.save(trainer, temp_path) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_model_torch_save_ddp_cuda(tmpdir): """Test to ensure torch save does not fail for model and trainer using gpu ddp.""" model = BoringModel() num_epochs = 1 trainer = Trainer( default_root_dir=tmpdir, max_epochs=num_epochs, accelerator="ddp_spawn", gpus=2 ) temp_path = os.path.join(tmpdir, 'temp.pt') trainer.fit(model) # Ensure these do not fail torch.save(trainer.model, temp_path) torch.save(trainer, temp_path)