# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import List, Optional from pytorch_lightning.callbacks import Callback, ModelCheckpoint, EarlyStopping, ProgressBarBase, ProgressBar from pytorch_lightning.loggers import LightningLoggerBase from pytorch_lightning.utilities.exceptions import MisconfigurationException class TrainerCallbackConfigMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class callbacks: List[Callback] default_root_dir: str logger: LightningLoggerBase weights_save_path: Optional[str] ckpt_path: str checkpoint_callback: Optional[ModelCheckpoint] @property @abstractmethod def slurm_job_id(self) -> int: """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def save_checkpoint(self, *args): """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def is_overridden(self, *args): """Warning: this is just empty shell for code implemented in other class.""" def configure_checkpoint_callback(self, checkpoint_callback): if checkpoint_callback is True: # when no val step is defined, use 'loss' otherwise 'val_loss' train_step_only = not self.is_overridden('validation_step') monitor_key = 'loss' if train_step_only else 'val_loss' checkpoint_callback = ModelCheckpoint( filepath=None, monitor=monitor_key ) elif checkpoint_callback is False: checkpoint_callback = None if checkpoint_callback: checkpoint_callback.save_function = self.save_checkpoint return checkpoint_callback def configure_early_stopping(self, early_stop_callback): if early_stop_callback is True or None: early_stop_callback = EarlyStopping( monitor='val_loss', patience=3, strict=True, verbose=True, mode='min' ) elif not early_stop_callback: early_stop_callback = None else: early_stop_callback = early_stop_callback return early_stop_callback def configure_progress_bar(self, refresh_rate=1, process_position=0): progress_bars = [c for c in self.callbacks if isinstance(c, ProgressBarBase)] if len(progress_bars) > 1: raise MisconfigurationException( 'You added multiple progress bar callbacks to the Trainer, but currently only one' ' progress bar is supported.' ) elif len(progress_bars) == 1: progress_bar_callback = progress_bars[0] elif refresh_rate > 0: progress_bar_callback = ProgressBar( refresh_rate=refresh_rate, process_position=process_position, ) self.callbacks.append(progress_bar_callback) else: progress_bar_callback = None return progress_bar_callback