Test set ======== Lightning forces the user to run the test set separately to make sure it isn't evaluated by mistake Test after fit -------------- To run the test set after training completes, use this method .. code-block:: python # run full training trainer.fit(model) # run test set trainer.test() Test pre-trained model ---------------------- To run the test set on a pre-trained model, use this method. .. code-block:: python model = MyLightningModule.load_from_metrics( weights_path='/path/to/pytorch_checkpoint.ckpt', tags_csv='/path/to/test_tube/experiment/version/meta_tags.csv', on_gpu=True, map_location=None ) # init trainer with whatever options trainer = Trainer(...) # test (pass in the model) trainer.test(model) In this case, the options you pass to trainer will be used when running the test set (ie: 16-bit, dp, ddp, etc...)