# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch import pytorch_lightning as pl import tests.base.develop_utils as tutils from tests.base import EvalModelTemplate @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_single_gpu_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0], ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results[0] old_weights = model.c_d1.weight.clone().detach().cpu() results = trainer.test(model) assert 'test_acc' in results[0] # make sure weights didn't change new_weights = model.c_d1.weight.clone().detach().cpu() assert torch.all(torch.eq(old_weights, new_weights)) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_ddp_spawn_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], distributed_backend='ddp_spawn', ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results[0] old_weights = model.c_d1.weight.clone().detach().cpu() results = trainer.test(model) assert 'test_acc' in results[0] # make sure weights didn't change new_weights = model.c_d1.weight.clone().detach().cpu() assert torch.all(torch.eq(old_weights, new_weights))