import glob import os import platform import time from distutils.version import LooseVersion from unittest import mock import pytest import torch from torch.utils.data.distributed import DistributedSampler from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import Callback, ModelCheckpoint from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin, FAIRSCALE_AVAILABLE from tests.base.boring_model import BoringModel, RandomDataset @mock.patch.dict( os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0", }, ) @mock.patch("torch.cuda.device_count", return_value=2) @pytest.mark.parametrize( ["ddp_backend", "gpus", "num_processes"], [("ddp_cpu", None, None), ("ddp", 2, 0), ("ddp2", 2, 0), ("ddp_spawn", 2, 0)], ) @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_choice_sharded_cpu(tmpdir, ddp_backend, gpus, num_processes): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.accelerator_backend.ddp_plugin, DDPShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, gpus=gpus, num_processes=num_processes, distributed_backend=ddp_backend, plugins=[DDPShardedPlugin()], callbacks=[CB()], ) with pytest.raises(SystemExit): trainer.fit(model) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir): model = BoringModel() trainer = Trainer( callbacks=[ModelCheckpoint(dirpath=tmpdir, save_last=True)], accelerator='ddp_cpu', plugins=[DDPShardedPlugin()], limit_train_batches=2, limit_val_batches=2, max_epochs=1 ) trainer.fit(model) checkpoint_path = glob.glob(os.path.join(tmpdir, "*.ckpt"))[0] saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param, shard_param) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir): model = BoringModel() trainer = Trainer( callbacks=[ModelCheckpoint(dirpath=tmpdir, save_last=True)], gpus=2, accelerator='ddp_spawn', plugins=[DDPShardedPlugin()], limit_train_batches=2, limit_val_batches=2, max_epochs=1 ) trainer.fit(model) checkpoint_path = glob.glob(os.path.join(tmpdir, "*.ckpt"))[0] saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param, shard_param) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_one_device(): run_sharded_correctness(accelerator='ddp_cpu') @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_one_gpu(): run_sharded_correctness(gpus=1, accelerator='ddp_spawn') @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Minimal PT version is set to 1.6") @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_amp_one_gpu(): run_sharded_correctness(gpus=1, precision=16, accelerator='ddp_spawn') @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_multi_gpu(): run_sharded_correctness(gpus=2, accelerator='ddp_spawn') @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Minimal PT version is set to 1.6") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_amp_multi_gpu(): run_sharded_correctness(gpus=2, precision=16, accelerator='ddp_spawn') class TestModel(BoringModel): """ Overrides training loader to ensure we enforce the same seed for all DDP processes. """ def train_dataloader(self): seed_everything(42) return torch.utils.data.DataLoader(RandomDataset(32, 64)) def record_ddp_fit_model_stats(trainer, model, gpus): """ Helper to calculate wall clock time for fit + max allocated memory. Args: trainer: The trainer object. model: The LightningModule. gpus: Number of GPUs in test. Returns: Max Memory if using GPUs, and total wall clock time. """ max_memory = None if gpus > 0: torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() time_start = time.perf_counter() trainer.fit(model) if gpus > 0: torch.cuda.synchronize() max_memory = torch.cuda.max_memory_allocated() / 2 ** 20 total_time = time.perf_counter() - time_start return max_memory, total_time def run_sharded_correctness( accelerator='ddp_spawn', gpus=0, precision=32, max_percent_speed_regression=0.1): """ Ensures that the trained model is identical to the standard DDP implementation. Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate. Args: accelerator: Accelerator type for test. gpus: Number of GPUS to enable. precision: Whether to use AMP or normal FP32 training. max_percent_speed_regression: The maximum speed regression compared to normal DDP training """ # Train normal DDP seed_everything(42) ddp_model = TestModel() trainer = Trainer( limit_val_batches=0.0, fast_dev_run=False, max_epochs=1, gpus=gpus, precision=precision, accelerator=accelerator, ) max_ddp_memory, ddp_time = record_ddp_fit_model_stats( trainer=trainer, model=ddp_model, gpus=gpus ) # Reset and train sharded DDP seed_everything(42) sharded_model = TestModel() trainer = Trainer( limit_val_batches=0.0, fast_dev_run=False, max_epochs=1, gpus=gpus, precision=precision, accelerator=accelerator, plugins=[DDPShardedPlugin()], ) max_sharded_memory, sharded_time = record_ddp_fit_model_stats( trainer=trainer, model=sharded_model, gpus=gpus ) # Assert model parameters are identical after fit for ddp_param, shard_param in zip(ddp_model.parameters(), sharded_model.parameters()): assert torch.equal(ddp_param, shard_param) # Assert speed parity upper_bound_speed = ddp_time * (1 + max_percent_speed_regression) assert sharded_time <= upper_bound_speed if gpus > 0: # Assert CUDA memory parity assert max_sharded_memory <= max_ddp_memory