import os import platform import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import Callback from pytorch_lightning.plugins import DDPShardedPlugin, DDPSpawnShardedPlugin from pytorch_lightning.utilities import _APEX_AVAILABLE, _FAIRSCALE_AVAILABLE, _NATIVE_AMP_AVAILABLE from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers.boring_model import BoringModel @pytest.mark.parametrize(["accelerator"], [("ddp_sharded", ), ("ddp_sharded_spawn", )]) @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_sharded_ddp_choice(tmpdir, accelerator): """ Test to ensure that plugin is correctly chosen """ class CB(Callback): def on_fit_start(self, trainer, pl_module): if accelerator == 'ddp_sharded': assert isinstance(trainer.accelerator_backend.training_type_plugin, DDPShardedPlugin) elif accelerator == 'ddp_sharded_spawn': assert isinstance(trainer.accelerator_backend.training_type_plugin, DDPSpawnShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, accelerator=accelerator, callbacks=[CB()], ) with pytest.raises(SystemExit): trainer.fit(model) @pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_invalid_apex_sharded(tmpdir): """ Test to ensure that we raise an error when we try to use apex and sharded """ model = BoringModel() with pytest.raises(MisconfigurationException, match='Sharded Plugin is not supported with Apex AMP'): trainer = Trainer( fast_dev_run=True, accelerator='ddp_sharded_spawn', precision=16, amp_backend='apex', ) trainer.fit(model) @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires GPU machine") @pytest.mark.parametrize(["accelerator"], [("ddp_sharded", ), ("ddp_sharded_spawn", )]) @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") @pytest.mark.skipif(not _NATIVE_AMP_AVAILABLE, reason="Requires native AMP") def test_ddp_choice_sharded_amp(tmpdir, accelerator): """ Test to ensure that plugin native amp plugin is correctly chosen when using sharded """ class CB(Callback): def on_fit_start(self, trainer, pl_module): if accelerator == 'ddp_sharded': assert isinstance(trainer.accelerator_backend.training_type_plugin, DDPShardedPlugin) elif accelerator == 'ddp_sharded_spawn': assert isinstance(trainer.accelerator_backend.training_type_plugin, DDPSpawnShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, gpus=1, precision=16, accelerator=accelerator, callbacks=[CB()], ) with pytest.raises(SystemExit): trainer.fit(model) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir): """ Test to ensure that checkpoint is saved correctly """ model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', num_processes=2, fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param.to("cpu"), shard_param) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir): """ Test to ensure that checkpoint is saved correctly when using multiple GPUs """ model = BoringModel() trainer = Trainer( gpus=2, accelerator='ddp_sharded_spawn', fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param.to("cpu"), shard_param) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_finetune(tmpdir): """ Test to ensure that we can save and restart training (simulate fine-tuning) """ model = BoringModel() trainer = Trainer( gpus=2, accelerator='ddp_sharded_spawn', fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) trainer = Trainer(fast_dev_run=True, ) trainer.fit(saved_model) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir): """ Test to ensure that resuming from checkpoint works """ model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', num_processes=2, fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', num_processes=2, fast_dev_run=True, resume_from_checkpoint=checkpoint_path, ) trainer.fit(model) @pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") @pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir): """ Test to ensure that resuming from checkpoint works when downsizing number of GPUS """ model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', fast_dev_run=True, gpus=2, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', fast_dev_run=True, gpus=1, resume_from_checkpoint=checkpoint_path, ) trainer.fit(model) @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir): """ Test to ensure that resuming from checkpoint works when going from GPUs- > CPU """ model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', gpus=1, fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', num_processes=2, fast_dev_run=True, resume_from_checkpoint=checkpoint_path, ) trainer.fit(model) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") @pytest.mark.skipif( not os.getenv("PL_RUNNING_SPECIAL_TESTS", '0') == '1', reason="test should be run outside of pytest" ) def test_ddp_sharded_plugin_test(tmpdir): """ Test to ensure we can use test without fit """ model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', num_processes=2, fast_dev_run=True, ) trainer.test(model) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not _FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_test_multigpu(tmpdir): """ Test to ensure we can use test without fit """ model = BoringModel() trainer = Trainer( accelerator='ddp_sharded_spawn', gpus=2, fast_dev_run=True, ) trainer.test(model)