# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from typing import Any, Callable, Dict, Generator, Union import torch from torch.optim import LBFGS, Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin from pytorch_lightning.utilities import ( _NATIVE_AMP_AVAILABLE, _TORCH_BFLOAT_AVAILABLE, _TORCH_CPU_AMP_AVAILABLE, AMPType, ) from pytorch_lightning.utilities.exceptions import MisconfigurationException class NativeMixedPrecisionPlugin(MixedPrecisionPlugin): """Plugin for native mixed precision training with :mod:`torch.cuda.amp`. Args: precision: Whether to use torch.float16 (16) or torch.bfloat16 (bf16). """ def __init__(self, precision: Union[int, str] = 16, use_cpu: bool = False) -> None: super().__init__() if not _NATIVE_AMP_AVAILABLE: raise MisconfigurationException( "You have asked for native AMP but your PyTorch version does not support it." " Consider upgrading with `pip install torch>=1.6`." ) if use_cpu and not _TORCH_CPU_AMP_AVAILABLE: raise MisconfigurationException( "You have asked for native AMP on CPU, but AMP is only available on GPU for PyTorch 1.9 " "and lower. To use native AMP on CPU, install PyTorch 1.10 or later." ) self.use_cpu = use_cpu self._dtype = self._select_precision_dtype(precision) self.backend = AMPType.NATIVE if not self.is_bfloat16: self.scaler = torch.cuda.amp.GradScaler() def _select_precision_dtype(self, precision: Union[int, str] = 16) -> torch.dtype: if precision == "bf16": if not _TORCH_BFLOAT_AVAILABLE: raise MisconfigurationException( "To use bfloat16 with native amp you must install torch greater or equal to 1.10." ) return torch.bfloat16 elif self.use_cpu: raise MisconfigurationException( "CPU native amp only supports bfloat16. Please pass precision='bf16' to the Trainer." ) return torch.float16 @property def is_bfloat16(self) -> bool: return self._dtype == torch.bfloat16 def pre_backward(self, model: "pl.LightningModule", closure_loss: torch.Tensor) -> torch.Tensor: if self.is_bfloat16: return super().pre_backward(model, closure_loss) closure_loss = self.scaler.scale(closure_loss) return super().pre_backward(model, closure_loss) def pre_optimizer_step( self, model: "pl.LightningModule", optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any, ) -> bool: if self.is_bfloat16: # skip scaler logic, as bfloat16 does not require scaler return super().pre_optimizer_step(model, optimizer, optimizer_idx, lambda_closure, **kwargs) if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"native PyTorch amp and lbfgs are not compatible (optimizer {optimizer_idx})." " To request, please file a Github issue in PyTorch and tag @mcarilli" ) result = lambda_closure() # native amp does not support closures self.scaler.unscale_(optimizer) super().pre_optimizer_step(model, optimizer, optimizer_idx, lambda_closure, **kwargs) skipped_backward = result is None # in manual optimization, the closure does not return a value if not model.automatic_optimization or not skipped_backward: # note: the scaler will skip the `optimizer.step` if nonfinite gradients are found self.scaler.step(optimizer) self.scaler.update() return False def autocast_context_manager(self) -> torch.cuda.amp.autocast: if self.use_cpu: return torch.cpu.amp.autocast(dtype=self._dtype) # Only reached in pytorch==1.10 where this is ok. skipcq if self.is_bfloat16: return torch.cuda.amp.autocast(dtype=self._dtype) # Only reached in pytorch==1.10 where this is ok. skipcq return torch.cuda.amp.autocast() @contextmanager def train_step_context(self) -> Generator[None, None, None]: """Enable autocast context.""" with self.autocast_context_manager(): yield @contextmanager def val_step_context(self) -> Generator[None, None, None]: """Enable autocast context.""" with self.autocast_context_manager(): yield @contextmanager def test_step_context(self) -> Generator[None, None, None]: """Enable autocast context.""" with self.autocast_context_manager(): yield @contextmanager def predict_step_context(self) -> Generator[None, None, None]: """Enable autocast context.""" with self.autocast_context_manager(): yield def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: if "native_amp_scaling_state" in checkpoint and not self.is_bfloat16: self.scaler.load_state_dict(checkpoint["native_amp_scaling_state"]) def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: if not self.is_bfloat16: checkpoint["native_amp_scaling_state"] = self.scaler.state_dict()