# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from copy import deepcopy from typing import Callable, List from pytorch_lightning.callbacks import Callback class TrainerCallbackHookMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class callbacks: List[Callback] = [] get_model: Callable def on_before_accelerator_backend_setup(self, model): """Called in the beginning of fit and test""" for callback in self.callbacks: callback.on_before_accelerator_backend_setup(self, model) def setup(self, model, stage: str): """Called in the beginning of fit and test""" for callback in self.callbacks: callback.setup(self, model, stage) def teardown(self, stage: str): """Called at the end of fit and test""" for callback in self.callbacks: callback.teardown(self, self.get_model(), stage) def on_init_start(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_init_start(self) def on_init_end(self): """Called when the trainer initialization ends, model has not yet been set.""" for callback in self.callbacks: callback.on_init_end(self) def on_fit_start(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_fit_start(self, self.get_model()) def on_fit_end(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_fit_end(self, self.get_model()) def on_sanity_check_start(self): """Called when the validation sanity check starts.""" for callback in self.callbacks: callback.on_sanity_check_start(self, self.get_model()) def on_sanity_check_end(self): """Called when the validation sanity check ends.""" for callback in self.callbacks: callback.on_sanity_check_end(self, self.get_model()) def on_train_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_train_epoch_start(self, self.get_model()) def on_train_epoch_end(self, outputs): """Called when the epoch ends.""" for callback in self.callbacks: callback.on_train_epoch_end(self, self.get_model(), outputs) def on_validation_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_validation_epoch_start(self, self.get_model()) def on_validation_epoch_end(self): """Called when the epoch ends.""" for callback in self.callbacks: callback.on_validation_epoch_end(self, self.get_model()) def on_test_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_test_epoch_start(self, self.get_model()) def on_test_epoch_end(self): """Called when the epoch ends.""" for callback in self.callbacks: callback.on_test_epoch_end(self, self.get_model()) def on_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_epoch_start(self, self.get_model()) def on_epoch_end(self): """Called when the epoch ends.""" for callback in self.callbacks: callback.on_epoch_end(self, self.get_model()) def on_train_start(self): """Called when the train begins.""" for callback in self.callbacks: callback.on_train_start(self, self.get_model()) def on_train_end(self): """Called when the train ends.""" for callback in self.callbacks: callback.on_train_end(self, self.get_model()) def on_pretrain_routine_start(self, model): """Called when the train begins.""" for callback in self.callbacks: callback.on_pretrain_routine_start(self, model) def on_pretrain_routine_end(self, model): """Called when the train ends.""" for callback in self.callbacks: callback.on_pretrain_routine_end(self, model) def on_batch_start(self): """Called when the training batch begins.""" for callback in self.callbacks: callback.on_batch_start(self, self.get_model()) def on_batch_end(self): """Called when the training batch ends.""" for callback in self.callbacks: callback.on_batch_end(self, self.get_model()) def on_train_batch_start(self, batch, batch_idx, dataloader_idx): """Called when the training batch begins.""" for callback in self.callbacks: callback.on_train_batch_start(self, self.get_model(), batch, batch_idx, dataloader_idx) def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): """Called when the training batch ends.""" for callback in self.callbacks: callback.on_train_batch_end(self, self.get_model(), outputs, batch, batch_idx, dataloader_idx) def on_validation_batch_start(self, batch, batch_idx, dataloader_idx): """Called when the validation batch begins.""" for callback in self.callbacks: callback.on_validation_batch_start(self, self.get_model(), batch, batch_idx, dataloader_idx) def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx): """Called when the validation batch ends.""" for callback in self.callbacks: callback.on_validation_batch_end(self, self.get_model(), outputs, batch, batch_idx, dataloader_idx) def on_test_batch_start(self, batch, batch_idx, dataloader_idx): """Called when the test batch begins.""" for callback in self.callbacks: callback.on_test_batch_start(self, self.get_model(), batch, batch_idx, dataloader_idx) def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx): """Called when the test batch ends.""" for callback in self.callbacks: callback.on_test_batch_end(self, self.get_model(), outputs, batch, batch_idx, dataloader_idx) def on_validation_start(self): """Called when the validation loop begins.""" for callback in self.callbacks: callback.on_validation_start(self, self.get_model()) def on_validation_end(self): """Called when the validation loop ends.""" for callback in self.callbacks: callback.on_validation_end(self, self.get_model()) def on_test_start(self): """Called when the test begins.""" for callback in self.callbacks: callback.on_test_start(self, self.get_model()) def on_test_end(self): """Called when the test ends.""" for callback in self.callbacks: callback.on_test_end(self, self.get_model()) def on_keyboard_interrupt(self): """Called when the training is interrupted by KeyboardInterrupt.""" for callback in self.callbacks: callback.on_keyboard_interrupt(self, self.get_model()) def on_save_checkpoint(self): """Called when saving a model checkpoint.""" callback_states = {} for callback in self.callbacks: callback_class = type(callback) state = callback.on_save_checkpoint(self, self.get_model()) if state: callback_states[callback_class] = state return callback_states def on_load_checkpoint(self, checkpoint): """Called when loading a model checkpoint.""" callback_states = checkpoint.get('callbacks') for callback in self.callbacks: state = callback_states.get(type(callback)) if state: state = deepcopy(state) callback.on_load_checkpoint(state) def on_after_backward(self): """ Called after loss.backward() and before optimizers do anything. """ for callback in self.callbacks: callback.on_after_backward(self, self.get_model()) def on_before_zero_grad(self, optimizer): """ Called after optimizer.step() and before optimizer.zero_grad(). """ for callback in self.callbacks: callback.on_before_zero_grad(self, self.get_model(), optimizer)