from typing import Sequence import torch from pytorch_lightning.metrics.functional.regression import ( mae, mse, psnr, rmse, rmsle, ssim ) from pytorch_lightning.metrics.metric import Metric class MSE(Metric): """ Computes the mean squared loss. Example: >>> pred = torch.tensor([0., 1, 2, 3]) >>> target = torch.tensor([0., 1, 2, 2]) >>> metric = MSE() >>> metric(pred, target) tensor(0.2500) """ def __init__( self, reduction: str = 'elementwise_mean', ): """ Args: reduction: a method for reducing mse over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements """ super().__init__(name='mse') self.reduction = reduction def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Actual metric computation Args: pred: predicted labels target: ground truth labels Return: A Tensor with the mse loss. """ return mse(pred, target, self.reduction) class RMSE(Metric): """ Computes the root mean squared loss. Example: >>> pred = torch.tensor([0., 1, 2, 3]) >>> target = torch.tensor([0., 1, 2, 2]) >>> metric = RMSE() >>> metric(pred, target) tensor(0.5000) """ def __init__( self, reduction: str = 'elementwise_mean', ): """ Args: reduction: a method for reducing mse over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements """ super().__init__(name='rmse') self.reduction = reduction def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Actual metric computation Args: pred: predicted labels target: ground truth labels Return: A Tensor with the rmse loss. """ return rmse(pred, target, self.reduction) class MAE(Metric): """ Computes the root mean absolute loss or L1-loss. Example: >>> pred = torch.tensor([0., 1, 2, 3]) >>> target = torch.tensor([0., 1, 2, 2]) >>> metric = MAE() >>> metric(pred, target) tensor(0.2500) """ def __init__( self, reduction: str = 'elementwise_mean', ): """ Args: reduction: a method for reducing mse over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements """ super().__init__(name='mae') self.reduction = reduction def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Actual metric computation Args: pred: predicted labels target: ground truth labels Return: A Tensor with the mae loss. """ return mae(pred, target, self.reduction) class RMSLE(Metric): """ Computes the root mean squared log loss. Example: >>> pred = torch.tensor([0., 1, 2, 3]) >>> target = torch.tensor([0., 1, 2, 2]) >>> metric = RMSLE() >>> metric(pred, target) tensor(0.0207) """ def __init__( self, reduction: str = 'elementwise_mean', ): """ Args: reduction: a method for reducing mse over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements """ super().__init__(name='rmsle') self.reduction = reduction def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Actual metric computation Args: pred: predicted labels target: ground truth labels Return: A Tensor with the rmsle loss. """ return rmsle(pred, target, self.reduction) class PSNR(Metric): """ Computes the peak signal-to-noise ratio Example: >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> metric = PSNR() >>> metric(pred, target) tensor(2.5527) """ def __init__( self, data_range: float = None, base: int = 10, reduction: str = 'elementwise_mean' ): """ Args: data_range: the range of the data. If None, it is determined from the data (max - min) base: a base of a logarithm to use (default: 10) reduction: method for reducing psnr (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements """ super().__init__(name='psnr') self.data_range = data_range self.base = float(base) self.reduction = reduction def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Actual metric computation Args: pred: predicted labels target: ground truth labels Return: A Tensor with psnr score. """ return psnr(pred, target, self.data_range, self.base, self.reduction) class SSIM(Metric): """ Computes Structual Similarity Index Measure Example: >>> pred = torch.rand([16, 1, 16, 16]) >>> target = pred * 0.75 >>> metric = SSIM() >>> metric(pred, target) tensor(0.9219) """ def __init__( self, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: float = None, k1: float = 0.01, k2: float = 0.03 ): """ Args: kernel_size: Size of the gaussian kernel. Default: (11, 11) sigma: Standard deviation of the gaussian kernel. Default: (1.5, 1.5) reduction: A method for reducing ssim. Default: ``elementwise_mean`` Available reduction methods: - elementwise_mean: takes the mean - none: pass away - sum: add elements data_range: Range of the image. If ``None``, it is determined from the image (max - min) k1: Parameter of SSIM. Default: 0.01 k2: Parameter of SSIM. Default: 0.03 """ super().__init__(name="ssim") self.kernel_size = kernel_size self.sigma = sigma self.reduction = reduction self.data_range = data_range self.k1 = k1 self.k2 = k2 def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Actual metric computation Args: pred: Estimated image target: Ground truth image Return: torch.Tensor: SSIM Score """ return ssim(pred, target, self.kernel_size, self.sigma, self.reduction, self.data_range, self.k1, self.k2)