# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import os import torch import torch.multiprocessing as mp from pytorch_lightning.utilities.distributed import rank_zero_only from pytorch_lightning import _logger as log try: from apex import amp except ImportError: APEX_AVAILABLE = False else: APEX_AVAILABLE = True class DDPSpawnBackend(object): def __init__(self, trainer): self.trainer = trainer self.mp_queue = None def setup(self): self.trainer.set_random_port() # pass in a state q smp = mp.get_context('spawn') self.mp_queue = smp.SimpleQueue() def train(self, model, nprocs): mp.spawn(self.ddp_train, nprocs=nprocs, args=(self.mp_queue, model,)) def teardown(self, model): # restore main state with best weights best_path = self.mp_queue.get() results = self.mp_queue.get() last_path = self.mp_queue.get() # transfer back the best path to the trainer if self.trainer.checkpoint_callback: self.trainer.checkpoint_callback.best_model_path = best_path # todo, pass also bets score # load last weights if last_path is not None and not self.trainer.testing: ckpt = torch.load(last_path, map_location=lambda storage, loc: storage) model.load_state_dict(ckpt) self.trainer.model = model return results def ddp_train(self, process_idx, mp_queue, model): """ Entry point for ddp Args: process_idx: mp_queue: multiprocessing queue model: Returns: """ # show progressbar only on progress_rank 0 if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None: self.trainer.progress_bar_callback.disable() # determine which process we are and world size if self.trainer.use_ddp: self.trainer.local_rank = process_idx self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes elif self.trainer.use_ddp2: self.trainer.local_rank = self.trainer.node_rank self.trainer.global_rank = self.trainer.node_rank self.trainer.world_size = self.trainer.num_nodes # set warning rank rank_zero_only.rank = self.trainer.global_rank # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table model.trainer = self.trainer model.init_ddp_connection( self.trainer.global_rank, self.trainer.world_size, self.trainer.is_slurm_managing_tasks ) # call setup after the ddp process has connected self.trainer.call_setup_hook(model) # on world_size=0 let everyone know training is starting if self.trainer.is_global_zero: log.info('-' * 100) log.info(f'distributed_backend={self.trainer.distributed_backend}') log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes') log.info('-' * 100) # CHOOSE OPTIMIZER # allow for lr schedulers as well optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model) self.trainer.optimizers = optimizers self.trainer.lr_schedulers = lr_schedulers self.trainer.optimizer_frequencies = optimizer_frequencies # call sync_bn before .cuda(), configure_apex and configure_ddp if self.trainer.sync_batchnorm: model = model.configure_sync_batchnorm(model) # MODEL # copy model to each gpu if self.trainer.on_gpu: gpu_idx = process_idx self.trainer.root_gpu = gpu_idx torch.cuda.set_device(self.trainer.root_gpu) model.cuda(self.trainer.root_gpu) # set model properties before going into wrapper self.trainer.copy_trainer_model_properties(model) # AMP # run through amp wrapper before going to distributed DP # TODO: remove with dropping NVIDIA AMP support native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast") if self.trainer.use_amp and not native_amp_available: model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level) self.trainer.optimizers = optimizers self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers) # DDP2 uses all GPUs on the machine if self.trainer.distributed_backend == 'ddp' or self.trainer.distributed_backend == 'ddp_spawn': device_ids = [self.trainer.root_gpu] elif self.trainer.use_ddp2: device_ids = self.trainer.data_parallel_device_ids else: # includes ddp_cpu device_ids = None # allow user to configure ddp model = model.configure_ddp(model, device_ids) # continue training routine results = self.trainer.run_pretrain_routine(model) # get original model model = self.trainer.get_model() # persist info in ddp_spawn self.trainer.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results) # clean up memory torch.cuda.empty_cache()