""" Example template for defining a system. """ import os from argparse import ArgumentParser import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from torch import optim from torch.utils.data import DataLoader from torchvision.datasets import MNIST from pytorch_lightning import _logger as log from pytorch_lightning.core import LightningModule class LightningTemplateModel(LightningModule): """ Sample model to show how to define a template. Example: >>> # define simple Net for MNIST dataset >>> params = dict( ... in_features=28 * 28, ... hidden_dim=1000, ... out_features=10, ... drop_prob=0.2, ... learning_rate=0.001 * 8, ... batch_size=2, ... data_root='./datasets', ... num_workers=4, ... ) >>> model = LightningTemplateModel(**params) """ def __init__(self, in_features: int = 28 * 28, hidden_dim: int = 1000, out_features: int = 10, drop_prob: float = 0.2, learning_rate: float = 0.001 * 8, batch_size: int = 2, data_root: str = './datasets', num_workers: int = 4, **kwargs ): # init superclass super().__init__() # save all variables in __init__ signature to self.hparams self.save_hyperparameters() self.c_d1 = nn.Linear(in_features=self.hparams.in_features, out_features=self.hparams.hidden_dim) self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim) self.c_d1_drop = nn.Dropout(self.hparams.drop_prob) self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim, out_features=self.hparams.out_features) self.example_input_array = torch.zeros(2, 1, 28, 28) def forward(self, x): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ x = self.c_d1(x.view(x.size(0), -1)) x = torch.tanh(x) x = self.c_d1_bn(x) x = self.c_d1_drop(x) x = self.c_d2(x) return x def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) tensorboard_logs = {'train_loss': loss} return {'loss': loss, 'log': tensorboard_logs} def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ x, y = batch y_hat = self(x) val_loss = F.cross_entropy(y_hat, y) labels_hat = torch.argmax(y_hat, dim=1) n_correct_pred = torch.sum(y == labels_hat).item() return {'val_loss': val_loss, "n_correct_pred": n_correct_pred, "n_pred": len(x)} def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) test_loss = F.cross_entropy(y_hat, y) labels_hat = torch.argmax(y_hat, dim=1) n_correct_pred = torch.sum(y == labels_hat).item() return {'test_loss': test_loss, "n_correct_pred": n_correct_pred, "n_pred": len(x)} def validation_epoch_end(self, outputs): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() val_acc = sum([x['n_correct_pred'] for x in outputs]) / sum(x['n_pred'] for x in outputs) tensorboard_logs = {'val_loss': avg_loss, 'val_acc': val_acc} return {'val_loss': avg_loss, 'log': tensorboard_logs} def test_epoch_end(self, outputs): avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() test_acc = sum([x['n_correct_pred'] for x in outputs]) / sum(x['n_pred'] for x in outputs) tensorboard_logs = {'test_loss': avg_loss, 'test_acc': test_acc} return {'test_loss': avg_loss, 'log': tensorboard_logs} # --------------------- # TRAINING SETUP # --------------------- def configure_optimizers(self): """ Return whatever optimizers and learning rate schedulers you want here. At least one optimizer is required. """ optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10) return [optimizer], [scheduler] def prepare_data(self): MNIST(self.hparams.data_root, train=True, download=True, transform=transforms.ToTensor()) MNIST(self.hparams.data_root, train=False, download=True, transform=transforms.ToTensor()) def setup(self, stage): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) self.mnist_train = MNIST(self.hparams.data_root, train=True, download=False, transform=transform) self.mnist_test = MNIST(self.hparams.data_root, train=False, download=False, transform=transform) def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers) def val_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers) @staticmethod def add_model_specific_args(parent_parser, root_dir): # pragma: no-cover """ Define parameters that only apply to this model """ parser = ArgumentParser(parents=[parent_parser]) # param overwrites # parser.set_defaults(gradient_clip_val=5.0) # network params parser.add_argument('--in_features', default=28 * 28, type=int) parser.add_argument('--hidden_dim', default=50000, type=int) # use 500 for CPU, 50000 for GPU to see speed difference parser.add_argument('--out_features', default=10, type=int) parser.add_argument('--drop_prob', default=0.2, type=float) # data parser.add_argument('--data_root', default=os.path.join(root_dir, 'mnist'), type=str) parser.add_argument('--num_workers', default=4, type=int) # training params (opt) parser.add_argument('--epochs', default=20, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--learning_rate', default=0.001, type=float) return parser