import os from abc import ABC from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping class TrainerCallbackConfigMixin(ABC): def __init__(self): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class self.default_save_path = None self.save_checkpoint = None self.slurm_job_id = None def configure_checkpoint_callback(self): """ Weight path set in this priority: Checkpoint_callback's path (if passed in). User provided weights_saved_path Otherwise use os.getcwd() """ if self.checkpoint_callback is True: # init a default one if self.logger is not None: ckpt_path = os.path.join( self.default_save_path, self.logger.name, f'version_{self.logger.version}', "checkpoints" ) else: ckpt_path = os.path.join(self.default_save_path, "checkpoints") self.checkpoint_callback = ModelCheckpoint( filepath=ckpt_path ) elif self.checkpoint_callback is False: self.checkpoint_callback = None if self.checkpoint_callback: # set the path for the callbacks self.checkpoint_callback.save_function = self.save_checkpoint # if checkpoint callback used, then override the weights path self.weights_save_path = self.checkpoint_callback.filepath # if weights_save_path is still none here, set to current working dir if self.weights_save_path is None: self.weights_save_path = self.default_save_path def configure_early_stopping(self, early_stop_callback): if early_stop_callback is True: self.early_stop_callback = EarlyStopping( monitor='val_loss', patience=3, strict=True, verbose=True, mode='min' ) self.enable_early_stop = True elif early_stop_callback is None: self.early_stop_callback = EarlyStopping( monitor='val_loss', patience=3, strict=False, verbose=False, mode='min' ) self.enable_early_stop = True elif not early_stop_callback: self.early_stop_callback = None self.enable_early_stop = False else: self.early_stop_callback = early_stop_callback self.enable_early_stop = True