import os import shutil import warnings from argparse import Namespace import pytest import numpy as np import torch from test_tube import Experiment, SlurmCluster # sys.path += [os.path.abspath('..'), os.path.abspath('../..')] from pytorch_lightning import Trainer from pytorch_lightning.testing.lm_test_module import LightningTestModel from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from pytorch_lightning.utilities.debugging import MisconfigurationException from pytorch_lightning.root_module import memory from pytorch_lightning.models.trainer import reduce_distributed_output from pytorch_lightning.root_module import model_saving from examples import LightningTemplateModel SEED = 2334 torch.manual_seed(SEED) np.random.seed(SEED) # ------------------------------------------------------------------------ # TESTS # ------------------------------------------------------------------------ def test_simple_cpu(): """ Verify continue training session on CPU :return: """ hparams = get_hparams() model = LightningTestModel(hparams) save_dir = init_save_dir() # exp file to get meta trainer_options = dict( max_nb_epochs=1, val_percent_check=0.1, train_percent_check=0.1, ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' clear_save_dir() def test_amp_single_gpu(): """ Make sure DDP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_ddp cannot run.' 'Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_ddp cannot run.' 'Rerun on a node with 2+ GPUs to run this test') return hparams = get_hparams() model = LightningTestModel(hparams) trainer_options = dict( progress_bar=True, max_nb_epochs=1, gpus=[0], distributed_backend='dp', use_amp=True ) run_gpu_model_test(trainer_options, model, hparams) def test_cpu_restore_training(): """ Verify continue training session on CPU :return: """ hparams = get_hparams() model = LightningTestModel(hparams) save_dir = init_save_dir() # exp file to get meta test_exp_version = 10 exp = get_exp(False, version=test_exp_version) exp.argparse(hparams) exp.save() trainer_options = dict( max_nb_epochs=2, val_check_interval=0.50, val_percent_check=0.2, train_percent_check=0.2, experiment=exp, checkpoint_callback=ModelCheckpoint(save_dir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) real_global_epoch = trainer.current_epoch # traning complete assert result == 1, 'amp + ddp model failed to complete' # wipe-out trainer and model # retrain with not much data... this simulates picking training back up after slurm # we want to see if the weights come back correctly new_exp = get_exp(False, version=test_exp_version) trainer_options = dict( max_nb_epochs=2, val_check_interval=0.50, val_percent_check=0.2, train_percent_check=0.2, experiment=new_exp, checkpoint_callback=ModelCheckpoint(save_dir), ) trainer = Trainer(**trainer_options) model = LightningTestModel(hparams) # set the epoch start hook so we can predict before the model does the full training def assert_good_acc(): assert trainer.current_epoch == real_global_epoch and trainer.current_epoch > 0 # if model and state loaded correctly, predictions will be good even though we # haven't trained with the new loaded model trainer.model.eval() run_prediction(trainer.val_dataloader, trainer.model) model.on_sanity_check_start = assert_good_acc # by calling fit again, we trigger training, loading weights from the cluster # and our hook to predict using current model before any more weight updates trainer.fit(model) clear_save_dir() def test_amp_gpu_ddp(): """ Make sure DDP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_ddp cannot run.' 'Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_ddp cannot run.' 'Rerun on a node with 2+ GPUs to run this test') return os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0]) hparams = get_hparams() model = LightningTestModel(hparams) trainer_options = dict( progress_bar=True, max_nb_epochs=1, gpus=[0, 1], distributed_backend='ddp', use_amp=True ) run_gpu_model_test(trainer_options, model, hparams) def test_cpu_slurm_save_load(): """ Verify model save/load/checkpoint on CPU :return: """ hparams = get_hparams() model = LightningTestModel(hparams) save_dir = init_save_dir() # exp file to get meta exp = get_exp(False) exp.argparse(hparams) exp.save() cluster_a = SlurmCluster() trainer_options = dict( max_nb_epochs=1, cluster=cluster_a, experiment=exp, checkpoint_callback=ModelCheckpoint(save_dir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) real_global_step = trainer.global_step # traning complete assert result == 1, 'amp + ddp model failed to complete' # predict with trained model before saving # make a prediction for batch in model.test_dataloader: break x, y = batch x = x.view(x.size(0), -1) model.eval() pred_before_saving = model(x) # test registering a save function trainer.enable_auto_hpc_walltime_manager() # test HPC saving # simulate snapshot on slurm saved_filepath = trainer.hpc_save(save_dir, exp) assert os.path.exists(saved_filepath) # wipe-out trainer and model # retrain with not much data... this simulates picking training back up after slurm # we want to see if the weights come back correctly continue_tng_hparams = get_hparams(continue_training=True, hpc_exp_number=cluster_a.hpc_exp_number) trainer_options = dict( max_nb_epochs=1, cluster=SlurmCluster(continue_tng_hparams), experiment=exp, checkpoint_callback=ModelCheckpoint(save_dir), ) trainer = Trainer(**trainer_options) model = LightningTestModel(hparams) # set the epoch start hook so we can predict before the model does the full training def assert_pred_same(): assert trainer.global_step == real_global_step and trainer.global_step > 0 # predict with loaded model to make sure answers are the same trainer.model.eval() new_pred = trainer.model(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1 model.on_epoch_start = assert_pred_same # by calling fit again, we trigger training, loading weights from the cluster # and our hook to predict using current model before any more weight updates trainer.fit(model) clear_save_dir() def test_loading_meta_tags(): hparams = get_hparams() # save tags exp = get_exp(False) exp.tag({'some_str': 'a_str', 'an_int': 1, 'a_float': 2.0}) exp.argparse(hparams) exp.save() # load tags tags_path = exp.get_data_path(exp.name, exp.version) + '/meta_tags.csv' tags = model_saving.load_hparams_from_tags_csv(tags_path) assert tags.batch_size == 32 and tags.hidden_dim == 1000 clear_save_dir() def test_dp_output_reduce(): # test identity when we have a single gpu out = torch.rand(3, 1) assert reduce_distributed_output(out, nb_gpus=1) is out # average when we have multiples assert reduce_distributed_output(out, nb_gpus=2) == out.mean() # when we have a dict of vals out = { 'a': out, 'b': { 'c': out } } reduced = reduce_distributed_output(out, nb_gpus=3) assert reduced['a'] == out['a'] assert reduced['b']['c'] == out['b']['c'] def test_model_saving_loading(): """ Tests use case where trainer saves the model, and user loads it from tags independently :return: """ hparams = get_hparams() model = LightningTestModel(hparams) save_dir = init_save_dir() # exp file to get meta exp = get_exp(False) exp.argparse(hparams) exp.save() trainer_options = dict( max_nb_epochs=1, cluster=SlurmCluster(), experiment=exp, checkpoint_callback=ModelCheckpoint(save_dir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' # make a prediction for batch in model.test_dataloader: break x, y = batch x = x.view(x.size(0), -1) # generate preds before saving model model.eval() pred_before_saving = model(x) # save model new_weights_path = os.path.join(save_dir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model tags_path = exp.get_data_path(exp.name, exp.version) tags_path = os.path.join(tags_path, 'meta_tags.csv') model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path, tags_csv=tags_path, on_gpu=False) model_2.eval() # make prediction # assert that both predictions are the same new_pred = model_2(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1 clear_save_dir() def test_model_freeze_unfreeze(): hparams = get_hparams() model = LightningTestModel(hparams) model.freeze() model.unfreeze() def test_amp_gpu_ddp_slurm_managed(): """ Make sure DDP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_ddp cannot run.' ' Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_ddp cannot run.' ' Rerun on a node with 2+ GPUs to run this test') return # simulate setting slurm flags os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0]) os.environ['SLURM_LOCALID'] = str(0) hparams = get_hparams() model = LightningTestModel(hparams) trainer_options = dict( progress_bar=True, max_nb_epochs=1, gpus=[0], distributed_backend='ddp', use_amp=True ) save_dir = init_save_dir() # exp file to get meta exp = get_exp(False) exp.argparse(hparams) exp.save() # exp file to get weights checkpoint = ModelCheckpoint(save_dir) # add these to the trainer options trainer_options['checkpoint_callback'] = checkpoint trainer_options['experiment'] = exp # fit model trainer = Trainer(**trainer_options) trainer.is_slurm_managing_tasks = True result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test root model address assert trainer.resolve_root_node_address('abc') == 'abc' assert trainer.resolve_root_node_address('abc[23]') == 'abc23' assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23' assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23' # test model loading with a map_location map_location = 'cuda:1' pretrained_model = load_model(exp, save_dir, True, map_location) # test model preds run_prediction(model.test_dataloader, pretrained_model) if trainer.use_ddp: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() # test HPC loading / saving trainer.hpc_save(save_dir, exp) trainer.hpc_load(save_dir, on_gpu=True) # test freeze on gpu model.freeze() model.unfreeze() clear_save_dir() def test_early_stopping_cpu_model(): """ Test each of the trainer options :return: """ stopping = EarlyStopping() trainer_options = dict( early_stop_callback=stopping, gradient_clip=1.0, overfit_pct=0.20, track_grad_norm=2, print_nan_grads=True, progress_bar=False, experiment=get_exp(), train_percent_check=0.1, val_percent_check=0.1 ) model, hparams = get_model() run_gpu_model_test(trainer_options, model, hparams, on_gpu=False) # test freeze on cpu model.freeze() model.unfreeze() def test_cpu_model_with_amp(): """ Make sure model trains on CPU :return: """ trainer_options = dict( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4, use_amp=True ) model, hparams = get_model() with pytest.raises((MisconfigurationException, ModuleNotFoundError)): run_gpu_model_test(trainer_options, model, hparams, on_gpu=False) def test_cpu_model(): """ Make sure model trains on CPU :return: """ trainer_options = dict( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4 ) model, hparams = get_model() run_gpu_model_test(trainer_options, model, hparams, on_gpu=False) def test_all_features_cpu_model(): """ Test each of the trainer options :return: """ trainer_options = dict( gradient_clip=1.0, overfit_pct=0.20, track_grad_norm=2, print_nan_grads=True, progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4 ) model, hparams = get_model() run_gpu_model_test(trainer_options, model, hparams, on_gpu=False) def test_single_gpu_model(): """ Make sure single GPU works (DP mode) :return: """ if not torch.cuda.is_available(): warnings.warn('test_single_gpu_model cannot run.' ' Rerun on a GPU node to run this test') return model, hparams = get_model() trainer_options = dict( progress_bar=False, max_nb_epochs=1, train_percent_check=0.1, val_percent_check=0.1, gpus=[0] ) run_gpu_model_test(trainer_options, model, hparams) def test_multi_gpu_model_dp(): """ Make sure DP works :return: """ if not torch.cuda.is_available(): warnings.warn('test_multi_gpu_model_dp cannot run.' ' Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_multi_gpu_model_dp cannot run.' ' Rerun on a node with 2+ GPUs to run this test') return model, hparams = get_model() trainer_options = dict( progress_bar=False, max_nb_epochs=1, train_percent_check=0.1, val_percent_check=0.1, gpus='-1' ) run_gpu_model_test(trainer_options, model, hparams) # test memory helper functions memory.get_gpu_memory_map() def test_amp_gpu_dp(): """ Make sure DP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_dp cannot run.' ' Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_dp cannot run.' ' Rerun on a node with 2+ GPUs to run this test') return model, hparams = get_model() trainer_options = dict( max_nb_epochs=1, gpus='0, 1', # test init with gpu string distributed_backend='dp', use_amp=True ) with pytest.raises(MisconfigurationException): run_gpu_model_test(trainer_options, model, hparams) def test_multi_gpu_model_ddp(): """ Make sure DDP works :return: """ if not torch.cuda.is_available(): warnings.warn('test_multi_gpu_model_ddp cannot run.' ' Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_multi_gpu_model_ddp cannot run.' ' Rerun on a node with 2+ GPUs to run this test') return os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0]) model, hparams = get_model() trainer_options = dict( progress_bar=False, max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.2, gpus=[0, 1], distributed_backend='ddp' ) run_gpu_model_test(trainer_options, model, hparams) def test_ddp_sampler_error(): """ Make sure DDP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test') return os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0]) hparams = get_hparams() model = LightningTestModel(hparams, force_remove_distributed_sampler=True) exp = get_exp(True) exp.save() trainer = Trainer( experiment=exp, progress_bar=False, max_nb_epochs=1, gpus=[0, 1], distributed_backend='ddp', use_amp=True ) with pytest.warns(UserWarning): trainer.get_dataloaders(model) clear_save_dir() # ------------------------------------------------------------------------ # UTILS # ------------------------------------------------------------------------ def run_gpu_model_test(trainer_options, model, hparams, on_gpu=True): save_dir = init_save_dir() # exp file to get meta exp = get_exp(False) exp.argparse(hparams) exp.save() # exp file to get weights checkpoint = ModelCheckpoint(save_dir) # add these to the trainer options trainer_options['checkpoint_callback'] = checkpoint trainer_options['experiment'] = exp # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(exp, save_dir, on_gpu) # test model preds run_prediction(model.test_dataloader, pretrained_model) if trainer.use_ddp: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() # test HPC loading / saving trainer.hpc_save(save_dir, exp) trainer.hpc_load(save_dir, on_gpu=on_gpu) clear_save_dir() def get_hparams(continue_training=False, hpc_exp_number=0): root_dir = os.path.dirname(os.path.realpath(__file__)) args = { 'drop_prob': 0.2, 'batch_size': 32, 'in_features': 28 * 28, 'learning_rate': 0.001 * 8, 'optimizer_name': 'adam', 'data_root': os.path.join(root_dir, 'mnist'), 'out_features': 10, 'hidden_dim': 1000} if continue_training: args['test_tube_do_checkpoint_load'] = True args['hpc_exp_number'] = hpc_exp_number hparams = Namespace(**args) return hparams def get_model(use_test_model=False): # set up model with these hyperparams hparams = get_hparams() if use_test_model: model = LightningTestModel(hparams) else: model = LightningTemplateModel(hparams) return model, hparams def get_exp(debug=True, version=None): # set up exp object without actually saving logs root_dir = os.path.dirname(os.path.realpath(__file__)) exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir', version=version) return exp def init_save_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) save_dir = os.path.join(root_dir, 'save_dir') if os.path.exists(save_dir): shutil.rmtree(save_dir) os.makedirs(save_dir, exist_ok=True) return save_dir def clear_save_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) save_dir = os.path.join(root_dir, 'save_dir') if os.path.exists(save_dir): shutil.rmtree(save_dir) def load_model(exp, save_dir, on_gpu, map_location=None): # load trained model tags_path = exp.get_data_path(exp.name, exp.version) tags_path = os.path.join(tags_path, 'meta_tags.csv') checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x] weights_dir = os.path.join(save_dir, checkpoints[0]) trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=on_gpu, map_location=map_location) assert trained_model is not None, 'loading model failed' return trained_model def run_prediction(dataloader, trained_model): # run prediction on 1 batch for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) y_hat = trained_model(x) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) val_acc = val_acc.item() print(val_acc) assert val_acc > 0.50, 'this model is expected to get > 0.50 in test set (it got %f)' % val_acc def assert_ok_acc(trainer): # this model should get 0.80+ acc acc = trainer.tng_tqdm_dic['val_acc'] assert acc > 0.50, 'model failed to get expected 0.50 validation accuracy. Got: %f' % acc if __name__ == '__main__': pytest.main([__file__])