![Logo](docs/source/_images/logos/lightning_logo.svg) # PyTorch Lightning **The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.**

MasterclassKey FeaturesHow To UseDocsExamplesCommunityLicence

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/) [![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning) [![PyPI Status](https://pepy.tech/badge/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning) [![Conda](https://img.shields.io/conda/v/conda-forge/pytorch-lightning?label=conda&color=success)](https://anaconda.org/conda-forge/pytorch-lightning) [![DockerHub](https://img.shields.io/docker/pulls/pytorchlightning/pytorch_lightning.svg)](https://hub.docker.com/r/pytorchlightning/pytorch_lightning) [![codecov](https://codecov.io/gh/PyTorchLightning/pytorch-lightning/branch/master/graph/badge.svg)](https://codecov.io/gh/PyTorchLightning/pytorch-lightning) [![ReadTheDocs](https://readthedocs.org/projects/pytorch-lightning/badge/?version=stable)](https://pytorch-lightning.readthedocs.io/en/stable/) [![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A) [![Discourse status](https://img.shields.io/discourse/status?server=https%3A%2F%2Fforums.pytorchlightning.ai)](https://forums.pytorchlightning.ai/) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/pytorch-lightning/blob/master/LICENSE) [![Next Release](https://img.shields.io/badge/Next%20Release-Sep%2014-.svg)](https://shields.io/)
###### *Codecov is > 90%+ but build delays may show less --- ## PyTorch Lightning is just organized PyTorch Lightning disentangles PyTorch code to decouple the science from the engineering. ![PT to PL](/docs/source/_images/general/pl_quick_start_full_compressed.gif) --- ## Lightning Philosophy Lightning is designed with these principles in mind: Principle 1: Enable maximal flexibility. Principle 2: Abstract away unecessary boilerplate, but make it accessible when needed. Principle 3: Systems should be self-contained (ie: optimizers, computation code, etc). Principle 4: Deep learning code should be organized into 4 distinct categories. - Research code (the LightningModule). - Engineering code (you delete, and is handled by the Trainer). - Non-essential research code (logging, etc... this goes in Callbacks). - Data (use PyTorch Dataloaders or organize them into a LightningDataModule). Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code! Get started with our [3 steps guide](https://pytorch-lightning.readthedocs.io/en/stable/new-project.html) --- ## Trending contributors [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/0)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/0) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/1)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/1) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/2)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/2) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/3)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/3) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/4)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/4) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/5)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/5) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/6)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/6) [![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/7)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/7) --- ## Continuous Integration
| System / PyTorch ver. | 1.3 (min. req.)* | 1.4 | 1.5 | 1.6 (latest) | 1.7 (nightly) | | :---: | :---: | :---: | :---: | :---: | :---: | | Conda py3.7 [linux] | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | | Linux py3.7 [GPUs**] | - | - |[![Build Status](http://104.154.220.231/api/badges/PyTorchLightning/pytorch-lightning/status.svg)](http://104.154.220.231/PyTorchLightning/pytorch-lightning) | - | - | | Linux py3.7 [TPUs***] | - | - | - | [![TPU tests](https://github.com/PyTorchLightning/pytorch-lightning/workflows/TPU%20tests/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22TPU+tests%22+branch%3Amaster) | - | | Linux py3.6 / py3.7 / py3.8 | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | | OSX py3.6 / py3.7 | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | | Windows py3.6 / py3.7 / py3.8 | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - _\* `torch>=1.4` is the minimal pytorch version for Python 3.8_ - _\** tests run on two NVIDIA K80_ - _\*** tests run on Google GKE TPUv2/3_ - _TPU w/ py3.6/py3.7 means we support Colab and Kaggle env._
--- ## How To Use #### Step 0: Install Simple installation from PyPI ```bash pip install pytorch-lightning ``` From Conda ```bash conda install pytorch-lightning -c conda-forge ``` Install bleeding-edge (no guarantees) ```bash pip install git+https://github.com/PytorchLightning/pytorch-lightning.git@master --upgrade ``` #### Step 0: Add these imports ```python import os import torch from torch import nn import torch.nn.functional as F from torchvision.datasets import MNIST from torch.utils.data import DataLoader, random_split from torchvision import transforms import pytorch_lightning as pl ``` #### Step 1: Define a LightningModule (nn.Module subclass) A LightningModule defines a full *system* (ie: a GAN, autoencoder, BERT or a simple Image Classifier). ```python class LitAutoEncoder(pl.LightningModule): def __init__(self): super().__init__() self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3)) self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28)) def forward(self, x): # in lightning, forward defines the prediction/inference actions embedding = self.encoder(x) return embedding def training_step(self, batch, batch_idx): # training_step defined the train loop. It is independent of forward x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer ``` ###### Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction. #### Step 2: Train! ```python dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()) train, val = random_split(dataset, [55000, 5000]) autoencoder = LitAutoEncoder() trainer = pl.Trainer() trainer.fit(autoencoder, DataLoader(train), DataLoader(val)) ``` #### And without changing a single line of code, you could run on GPUs ```python # 8 GPUs trainer = Trainer(max_epochs=1, gpus=8) # 256 GPUs trainer = Trainer(max_epochs=1, gpus=8, num_nodes=32) ``` Or TPUs ```python # Distributes TPU core training trainer = Trainer(tpu_cores=8) # Single TPU core training trainer = Trainer(tpu_cores=[1]) ``` --- ## Key Features * Scale your models to run on any hardware (CPU, GPUs, TPUs) without changing your model * Making code more readable by decoupling the research code from the engineering * Easier to reproduce * Less error prone by automating most of the training loop and tricky engineering * Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate * Lightning has out-of-the-box integration with the popular logging/visualizing frameworks ([Tensorboard](https://pytorch.org/docs/stable/tensorboard.html), [MLFlow](https://mlflow.org/), [Neptune.ai](https://neptune.ai/), [Comet.ml](https://www.comet.ml/site/), [Wandb](https://www.wandb.com/)). * [Tested rigorously with every new PR](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs. * Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch). ### Lightning automates 40+ parts of DL/ML research - GPU training - Distributed GPU (cluster) training - TPU training - EarlyStopping - Logging/Visualizing - Checkpointing - Experiment management - [Full list here](https://pytorch-lightning.readthedocs.io/en/latest/#common-use-cases) --- ## Examples ###### Hello world [MNIST hello world](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/01-mnist-hello-world.ipynb) [MNIST on TPUs](https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3) ###### Contrastive Learning [BYOL](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#byol) [CPC v2](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#cpc-v2) [Moco v2](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#moco-v2) [SIMCLR](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#simclr) ###### NLP [BERT](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/04-transformers-text-classification.ipynb) [GPT-2](https://pytorch-lightning-bolts.readthedocs.io/en/latest/convolutional.html#gpt-2) ###### Reinforcement Learning [DQN](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=NWvMLBDySQI5) [Dueling-DQN](https://pytorch-lightning-bolts.readthedocs.io/en/latest/reinforce_learn.html#dueling-dqn) [Reinforce](https://pytorch-lightning-bolts.readthedocs.io/en/latest/reinforce_learn.html#reinforce) ###### Vision [GAN](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/03-basic-gan.ipynb) ###### Classic ML [Logistic Regression](https://pytorch-lightning-bolts.readthedocs.io/en/latest/classic_ml.html#logistic-regression) [Linear Regression](https://pytorch-lightning-bolts.readthedocs.io/en/latest/classic_ml.html#linear-regression) --- ## Community The lightning community is maintained by - [16 core contributors](https://pytorch-lightning.readthedocs.io/en/latest/governance.html) who are all a mix of professional engineers, Research Scientists, Ph.D. students from top AI labs. - 280+ community contributors. Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support. ### Asking for help If you have any questions please: 1. [Read the docs](https://pytorch-lightning.rtfd.io/en/latest/). 2. [Look it up in our forum (or add a new question)](https://forums.pytorchlightning.ai/) 2. [Search through the issues](https://github.com/PytorchLightning/pytorch-lightning/issues?utf8=%E2%9C%93&q=my++question). 3. [Join our slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A). 4. [Ask on stackoverflow](https://stackoverflow.com/questions/ask?guided=false) with the tag pytorch-lightning. ### Funding Building open-source software with only a few part-time people is hard! We've secured funding to make sure we can hire a full-time staff, attend conferences, and move faster through implementing features you request. Our goal is to build an incredible research platform and a big supportive community. Many open-source projects have gone on to fund operations through things like support and special help for big corporations! If you are one of these corporations, please feel free to reach out to will@pytorchlightning.ai! --- ## Licence Please observe the Apache 2.0 license that is listed in this repository. In addition the Lightning framework is Patent Pending. ## BibTeX If you want to cite the framework feel free to use this (but only if you loved it 😊): ```bibtex @article{falcon2019pytorch, title={PyTorch Lightning}, author={Falcon, WA}, journal={GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning}, volume={3}, year={2019} } ```