Experiment Logging
==================
Comet.ml
^^^^^^^^
`Comet.ml `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install comet-ml
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. doctest::
>>> import os
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import CometLogger
>>> comet_logger = CometLogger(
... api_key=os.environ.get('COMET_API_KEY'),
... workspace=os.environ.get('COMET_WORKSPACE'), # Optional
... save_dir='.', # Optional
... project_name='default_project', # Optional
... rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
... experiment_name='default' # Optional
... )
>>> trainer = Trainer(logger=comet_logger)
The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def any_lightning_module_function_or_hook(self):
... some_img = fake_image()
... self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.CometLogger` docs.
MLflow
^^^^^^
`MLflow `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install mlflow
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. doctest::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import MLFlowLogger
>>> mlf_logger = MLFlowLogger(
... experiment_name="default",
... tracking_uri="file:/."
... )
>>> trainer = Trainer(logger=mlf_logger)
.. seealso::
:class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
Neptune.ai
^^^^^^^^^^
`Neptune.ai `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install neptune-client
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. doctest::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import NeptuneLogger
>>> neptune_logger = NeptuneLogger(
... api_key='ANONYMOUS', # replace with your own
... project_name='shared/pytorch-lightning-integration',
... experiment_name='default', # Optional,
... params={'max_epochs': 10}, # Optional,
... tags=['pytorch-lightning', 'mlp'], # Optional,
... )
>>> trainer = Trainer(logger=neptune_logger)
The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def any_lightning_module_function_or_hook(self):
... some_img = fake_image()
... self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
allegro.ai TRAINS
^^^^^^^^^^^^^^^^^
`allegro.ai `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.TrainsLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install trains
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. doctest::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TrainsLogger
>>> trains_logger = TrainsLogger(
... project_name='examples',
... task_name='pytorch lightning test',
... ) # doctest: +ELLIPSIS
TRAINS Task: ...
TRAINS results page: ...
>>> trainer = Trainer(logger=trains_logger)
The :class:`~pytorch_lightning.loggers.TrainsLogger` is available anywhere in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def __init__(self):
... some_img = fake_image()
... self.logger.experiment.log_image('debug', 'generated_image_0', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TrainsLogger` docs.
Tensorboard
^^^^^^^^^^^
To use `TensorBoard `_ as your logger do the following.
.. doctest::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TensorBoardLogger
>>> logger = TensorBoardLogger('tb_logs', name='my_model')
>>> trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def any_lightning_module_function_or_hook(self):
... some_img = fake_image()
... self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
Test Tube
^^^^^^^^^
`Test Tube `_ is a
`TensorBoard `_ logger but with nicer file structure.
To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install test_tube
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. doctest::
>>> from pytorch_lightning.loggers import TestTubeLogger
>>> logger = TestTubeLogger('tb_logs', name='my_model')
>>> trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def any_lightning_module_function_or_hook(self):
... some_img = fake_image()
... self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TestTubeLogger` docs.
Weights and Biases
^^^^^^^^^^^^^^^^^^
`Weights and Biases `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install wandb
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. doctest::
>>> from pytorch_lightning.loggers import WandbLogger
>>> wandb_logger = WandbLogger()
>>> trainer = Trainer(logger=wandb_logger)
The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def any_lightning_module_function_or_hook(self):
... some_img = fake_image()
... self.logger.experiment.log({
... "generated_images": [wandb.Image(some_img, caption="...")]
... })
.. seealso::
:class:`~pytorch_lightning.loggers.WandbLogger` docs.
Multiple Loggers
^^^^^^^^^^^^^^^^
Lightning supports the use of multiple loggers, just pass a list to the
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
.. doctest::
>>> from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
>>> logger1 = TensorBoardLogger('tb_logs', name='my_model')
>>> logger2 = TestTubeLogger('tb_logs', name='my_model')
>>> trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. doctest::
>>> from pytorch_lightning import LightningModule
>>> class MyModule(LightningModule):
... def any_lightning_module_function_or_hook(self):
... some_img = fake_image()
... # Option 1
... self.logger.experiment[0].add_image('generated_images', some_img, 0)
... # Option 2
... self.logger[0].experiment.add_image('generated_images', some_img, 0)