The Keras for ML-researchers in PyTorch. More control. Less boilerplate.
```bash pip install pytorch-lightning ``` ## Docs In progress. Documenting now! ## What is it? All you do is define the forward passes, your data and lightning runs everything else for you. BUT, you still keep control over every aspect of training: 1. Running the training loop. 2. Running the validation loop. 3. Running the testing loop. 4. Early stopping. 5. Learning rate annealing. 6. Can train complex models like GANs or anything with multiple optimizers. 7. Weight checkpointing. 8. Model saving. 9. Model loading. 10. Logging training details (through test-tube). 11. Runs training on multiple GPUs (through test-tube). 12. Runs training on a GPU cluster managed by SLURM (through test-tube). 13. Gives your model hyperparameters parsed from the command line OR a JSON file. 14. Runs your model in a dev environment where nothing logs. ## Usage To use lightning do 2 things: 1. [Define a trainer](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/trainer_main.py) (which will run ALL your models). 2. [Define a model](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/models/sample_model_template/model_template.py). ### Example: #### Define the trainer ```python # trainer.py from pytorch_lightning.models.trainer import Trainer from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint from my_project import My_Model from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster # -------------- # TEST TUBE INIT exp = Experiment( name='my_exp', debug=True, save_dir='/some/path', autosave=False, description='my desc' ) # -------------------- # CALLBACKS early_stop = EarlyStopping( monitor='val_loss', patience=3, verbose=True, mode='min' ) model_save_path = 'PATH/TO/SAVE' checkpoint = ModelCheckpoint( filepath=model_save_path, save_function=None, save_best_only=True, verbose=True, monitor='val_acc', mode='min' ) # configure trainer trainer = Trainer( experiment=experiment, cluster=cluster, checkpoint_callback=checkpoint, early_stop_callback=early_stop ) # init model and train model = My_Model() trainer.fit(model) ``` #### Define the model ```python from torch import nn class My_Model(RootModule): def __init__(self): # define model self.l1 = nn.Linear(200, 10) # --------------- # TRAINING def training_step(self, data_batch): x, y = data_batch y_hat = self.l1(x) loss = some_loss(y_hat) return loss_val, {'train_loss': loss} def validation_step(self, data_batch): x, y = data_batch y_hat = self.l1(x) loss = some_loss(y_hat) return loss_val, {'val_loss': loss} def validation_end(self, outputs): total_accs = [] for output in outputs: total_accs.append(output['val_acc'].item()) # return a dict return {'total_acc': np.mean(total_accs)} # --------------- # SAVING def get_save_dict(self): # lightning saves for you. Here's your chance to say what you want to save checkpoint = {'state_dict': self.state_dict()} return checkpoint def load_model_specific(self, checkpoint): # lightning loads for you. Here's your chance to say what you want to load self.load_state_dict(checkpoint['state_dict']) # --------------- # TRAINING CONFIG def configure_optimizers(self): # give lightning the list of optimizers you want to use. # lightning will call automatically optimizer = self.choose_optimizer('adam', self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer') return [optimizer] @property def tng_dataloader(self): return pytorch_dataloader('train') @property def val_dataloader(self): return pytorch_dataloader('val') @property def test_dataloader(self): return pytorch_dataloader('test') # --------------- # MODIFY YOUR COMMAND LINE ARGS @staticmethod def add_model_specific_args(parent_parser): parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser]) parser.add_argument('--out_features', default=20) return parser ``` ### Details #### Model definition | Name | Description | Input | Return | |---|---|---|---| | training_step | Called with a batch of data during training | data from your dataloaders | tuple: scalar, dict | | validation_step | Called with a batch of data during validation | data from your dataloaders | tuple: scalar, dict | | validation_end | Collate metrics from all validation steps | outputs: array where each item is the output of a validation step | dict: for logging | | get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | #### Model training | Name | Description | Input | Return | |---|---|---|---| | configure_optimizers | called during training setup | None | list: optimizers you want to use | | tng_dataloader | called during training | None | pytorch dataloader | | val_dataloader | called during validation | None | pytorch dataloader | | test_dataloader | called during testing | None | pytorch dataloader | | add_model_specific_args | called with args you defined in your main. This lets you tailor args for each model and keep main the same | argparse | argparse | #### Model Saving/Loading | Name | Description | Input | Return | |---|---|---|---| | get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | | load_model_specific | called when loading a model | checkpoint: dict you created in get_save_dict | dict: modified in whatever way you want | ## Optional model hooks. Add these to the model whenever you want to configure training behavior. ### Model lifecycle hooks Use these hooks to customize functionality | Method | Purpose | Input | Output | Required | |---|---|---|---|---| | on_batch_start() | called right before the batch starts | - | - | N | | on_batch_end() | called right after the batch ends | - | - | N | | on_epoch_start() | called right before the epoch starts | - | - | N | | on_epoch_end() | called right afger the epoch ends | - | - | N | | on_pre_performance_check() | called right before the performance check starts | - | - | N | | on_post_performance_check() | called right after the batch starts | - | - | N |