# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Optional import pytorch_lightning as pl from pytorch_lightning.plugins.io.xla_plugin import XLACheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.single_device import SingleDeviceStrategy from pytorch_lightning.utilities import _TPU_AVAILABLE, find_shared_parameters, set_shared_parameters from pytorch_lightning.utilities.model_helpers import is_overridden if _TPU_AVAILABLE: import torch_xla.core.xla_model as xm class SingleTPUStrategy(SingleDeviceStrategy): """Strategy for training on a single TPU device.""" def __init__( self, device: int, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, checkpoint_io: Optional[XLACheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, debug: bool = False, ): device = xm.xla_device(device) checkpoint_io = checkpoint_io or XLACheckpointIO() super().__init__( accelerator=accelerator, device=device, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin ) self.debug = debug self.tpu_local_core_rank = 0 self.tpu_global_core_rank = 0 @property def is_distributed(self) -> bool: return False def setup(self, trainer: "pl.Trainer") -> None: shared_params = find_shared_parameters(self.model) self.model_to_device() if is_overridden("on_post_move_to_device", self.lightning_module): self.model.on_post_move_to_device() else: set_shared_parameters(self.model, shared_params) super().setup(trainer) if isinstance(self.device, int): self.device = xm.xla_device(self.device) if self.debug: os.environ["PT_XLA_DEBUG"] = str(1) self.tpu_local_core_rank = xm.get_local_ordinal() self.tpu_global_core_rank = xm.get_ordinal() def model_to_device(self) -> None: self.model.to(self.root_device) def teardown(self) -> None: super().teardown() # TPU teardown os.environ.pop("PT_XLA_DEBUG", None)