# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning.strategies.ddp import DDPStrategy from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.enums import _StrategyType from pytorch_lightning.utilities.types import _METRIC_COLLECTION class DDP2Strategy(DDPStrategy): """DDP2 behaves like DP in one node, but synchronization across nodes behaves like in DDP.""" distributed_backend = _StrategyType.DDP2 @property def global_rank(self) -> int: return self.node_rank @property def world_size(self) -> int: return self.num_nodes def reduce(self, collection: _METRIC_COLLECTION, *args, **kwargs) -> _METRIC_COLLECTION: """Reduces a collection of tensors from all processes. It can be applied to just a single tensor. In DDP2, the reduction here is only across local devices within the node. Args: collection: The collection of tensors to sync and reduce. *args: ignored for DDP2 **kwargs: ignored for DDP2 Return: Reduced tensor values or the same value if it was not or did not contain a tensor. """ def mean(t: torch.Tensor) -> torch.Tensor: original_dtype = t.dtype return t.float().mean().to(original_dtype) return apply_to_collection(collection, torch.Tensor, mean) @property def root_device(self): return self.parallel_devices[0] def model_to_device(self): # no need to do anything when model is wrapped in torch.nn.DataParallel pass @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=self.num_nodes, rank=self.global_rank) return distributed_sampler_kwargs @property def _is_single_process_single_device(self) -> bool: return False def set_world_ranks(self) -> None: if self.cluster_environment is None: return self.cluster_environment.set_global_rank(self.node_rank) self.cluster_environment.set_world_size(self.num_nodes)