:orphan: ######################################## Add Component made by others to your App ######################################## .. _jumpstart_from_component_gallery: Anyone can build components for their own use case and promote them on the `Component Gallery `_. In return, you can benefit from the work of others and add new functionalities to your Apps with minimal effort. ************* User Workflow ************* #. Visit the `Component Gallery `_ and look for a Component close to something you want to do. .. raw:: html
#. Check out the code for inspiration or simply install the component from PyPi and use it. ---- ************* Success Story ************* The default `Train and Demo Application `_ trains a PyTorch Lightning model and then starts a demo with `Gradio `_. .. code-block:: python import os.path as ops import lightning as L from quick_start.components import PyTorchLightningScript, ImageServeGradio class TrainDeploy(L.LightningFlow): def __init__(self): super().__init__() self.train_work = PyTorchLightningScript( script_path=ops.join(ops.dirname(__file__), "./train_script.py"), script_args=["--trainer.max_epochs=5"], ) self.serve_work = ImageServeGradio(L.CloudCompute("cpu")) def run(self): # 1. Run the python script that trains the model self.train_work.run() # 2. when a checkpoint is available, deploy if self.train_work.best_model_path: self.serve_work.run(self.train_work.best_model_path) def configure_layout(self): tab_1 = {"name": "Model training", "content": self.train_work} tab_2 = {"name": "Interactive demo", "content": self.serve_work} return [tab_1, tab_2] app = L.LightningApp(TrainDeploy()) However, someone who wants to use this Aop (maybe you) found `Lightning HPO `_ from browsing the `Component Gallery `_ and decided to give it a spin after checking the associated `Github Repository `_. Once ``lightning_hpo`` installed, they improved the default App by easily adding HPO support to their project. Here is the resulting App. It is almost the same code, but it's way more powerful now! This is the power of `lightning.ai `_ ecosystem 🔥⚡🔥 .. code-block:: python import os.path as ops import lightning as L from quick_start.components import PyTorchLightningScript, ImageServeGradio import optuna from optuna.distributions import LogUniformDistribution from lightning_hpo import Optimizer, BaseObjective class HPOPyTorchLightningScript(PyTorchLightningScript, BaseObjective): @staticmethod def distributions(): return {"model.lr": LogUniformDistribution(0.0001, 0.1)} class TrainDeploy(L.LightningFlow): def __init__(self): super().__init__() self.train_work = Optimizer( script_path=ops.join(ops.dirname(__file__), "./train_script.py"), script_args=["--trainer.max_epochs=5"], objective_cls=HPOPyTorchLightningScript, n_trials=4, ) self.serve_work = ImageServeGradio(L.CloudCompute("cpu")) def run(self): # 1. Run the python script that trains the model self.train_work.run() # 2. when a checkpoint is available, deploy if self.train_work.best_model_path: self.serve_work.run(self.train_work.best_model_path) def configure_layout(self): tab_1 = {"name": "Model training", "content": self.train_work.hi_plot} tab_2 = {"name": "Interactive demo", "content": self.serve_work} return [tab_1, tab_2] app = L.LightningApp(TrainDeploy()) ---- ********** Next Steps ********** .. raw:: html
.. displayitem:: :header: Start from Ready-to-Run Template Apps :description: Jump-start your projects development :col_css: col-md-6 :button_link: jumpstart_from_app_gallery.html :height: 180 .. displayitem:: :header: Level-up your skills with Lightning Apps :description: From Basic to Advanced Skills :col_css: col-md-6 :button_link: ../levels/basic/index.html :height: 180 .. raw:: html