from typing import Any, Iterator import torch import torch.nn as nn from torch import Tensor from torch.nn import Module from torch.optim import Optimizer from torch.utils.data import DataLoader, Dataset, IterableDataset from lightning_lite import LightningLite class RandomDataset(Dataset): def __init__(self, size: int, length: int) -> None: self.len = length self.data = torch.randn(length, size) def __getitem__(self, index: int) -> Tensor: return self.data[index] def __len__(self) -> int: return self.len class RandomIterableDataset(IterableDataset): def __init__(self, size: int, count: int) -> None: self.count = count self.size = size def __iter__(self) -> Iterator[Tensor]: for _ in range(self.count): yield torch.randn(self.size) class BoringLite(LightningLite): def get_model(self) -> Module: return nn.Linear(32, 2) def get_optimizer(self, module: Module) -> Optimizer: return torch.optim.SGD(module.parameters(), lr=0.1) def get_dataloader(self) -> DataLoader: return DataLoader(RandomDataset(32, 64)) def step(self, model: Module, batch: Any) -> Tensor: output = model(batch) loss = torch.nn.functional.mse_loss(output, torch.ones_like(output)) return loss def after_backward(self, model: Module) -> None: pass def after_optimizer_step(self, model: Module, optimizer: Optimizer) -> None: pass def run(self) -> None: model = self.get_model() optimizer = self.get_optimizer(model) dataloader = self.get_dataloader() model, optimizer = self.setup(model, optimizer) dataloader = self.setup_dataloaders(dataloader) self.model = model self.optimizer = optimizer self.dataloader = dataloader model.train() data_iter = iter(dataloader) batch = next(data_iter) loss = self.step(model, batch) self.backward(loss) self.after_backward(model) optimizer.step() self.after_optimizer_step(model, optimizer) optimizer.zero_grad()