# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning import LightningDataModule, LightningModule, Trainer from pytorch_lightning.metrics.functional import accuracy from pytorch_lightning.utilities import DistributedType from tests.helpers import BoringModel from tests.helpers.utils import get_default_logger, load_model_from_checkpoint, reset_seed def run_model_test_without_loggers( trainer_options: dict, model: LightningModule, data: LightningDataModule = None, min_acc: float = 0.50 ): reset_seed() # fit model trainer = Trainer(**trainer_options) trainer.fit(model, datamodule=data) # correct result and ok accuracy assert trainer.state.finished, f"Training failed with {trainer.state}" model2 = load_model_from_checkpoint(trainer.logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model2.test_dataloader() if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model2, BoringModel): for dataloader in test_loaders: run_prediction_eval_model_template(model2, dataloader, min_acc=min_acc) def run_model_test( trainer_options, model: LightningModule, data: LightningDataModule = None, on_gpu: bool = True, version=None, with_hpc: bool = True, min_acc: float = 0.25 ): reset_seed() save_dir = trainer_options['default_root_dir'] # logger file to get meta logger = get_default_logger(save_dir, version=version) trainer_options.update(logger=logger) trainer = Trainer(**trainer_options) initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) trainer.fit(model, datamodule=data) post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) assert trainer.state.finished, f"Training failed with {trainer.state}" # Check that the model is actually changed post-training change_ratio = torch.norm(initial_values - post_train_values) assert change_ratio > 0.1, f"the model is changed of {change_ratio}" # test model loading pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model.test_dataloader() if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model, BoringModel): for dataloader in test_loaders: run_prediction_eval_model_template(model, dataloader, min_acc=min_acc) if with_hpc: if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2): # on hpc this would work fine... but need to hack it for the purpose of the test trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \ trainer.init_optimizers(pretrained_model) # test HPC saving trainer.checkpoint_connector.hpc_save(save_dir, logger) # test HPC loading checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(save_dir) trainer.checkpoint_connector.hpc_load(checkpoint_path, on_gpu=on_gpu) @torch.no_grad() def run_prediction_eval_model_template(trained_model, dataloader, min_acc=0.50): # run prediction on 1 batch trained_model.cpu() trained_model.eval() batch = next(iter(dataloader)) x, y = batch x = x.flatten(1) y_hat = trained_model(x) acc = accuracy(y_hat.cpu(), y.cpu(), top_k=2).item() assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"