# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Runs either `.fit()` or `.test()` on a single node across multiple gpus. """ import os from argparse import ArgumentParser import torch from pytorch_lightning import seed_everything, Trainer from tests.helpers.datamodules import ClassifDataModule from tests.helpers.simple_models import ClassificationModel def main(): seed_everything(4321) parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parser) parser.add_argument('--trainer_method', default='fit') parser.add_argument('--tmpdir') parser.add_argument('--workdir') parser.set_defaults(gpus=2) parser.set_defaults(accelerator="ddp") args = parser.parse_args() dm = ClassifDataModule() model = ClassificationModel() trainer = Trainer.from_argparse_args(args) if args.trainer_method == 'fit': trainer.fit(model, datamodule=dm) result = None elif args.trainer_method == 'test': result = trainer.test(model, datamodule=dm) elif args.trainer_method == 'fit_test': trainer.fit(model, datamodule=dm) result = trainer.test(model, datamodule=dm) else: raise ValueError(f'Unsupported: {args.trainer_method}') result_ext = { 'status': 'complete', 'method': args.trainer_method, 'result': result, } file_path = os.path.join(args.tmpdir, 'ddp.result') torch.save(result_ext, file_path) if __name__ == '__main__': main()