# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import torch METRIC_EPS = 1e-6 def dim_zero_cat(x): return torch.cat(x, dim=0) def dim_zero_sum(x): return torch.sum(x, dim=0) def dim_zero_mean(x): return torch.mean(x, dim=0) def _flatten(x): return [item for sublist in x for item in sublist] def to_onehot( tensor: torch.Tensor, num_classes: int, ) -> torch.Tensor: """ Converts a dense label tensor to one-hot format Args: tensor: dense label tensor, with shape [N, d1, d2, ...] num_classes: number of classes C Output: A sparse label tensor with shape [N, C, d1, d2, ...] Example: >>> x = torch.tensor([1, 2, 3]) >>> to_onehot(x, num_classes=4) tensor([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) """ dtype, device, shape = tensor.dtype, tensor.device, tensor.shape tensor_onehot = torch.zeros(shape[0], num_classes, *shape[1:], dtype=dtype, device=device) index = tensor.long().unsqueeze(1).expand_as(tensor_onehot) return tensor_onehot.scatter_(1, index, 1.0) def _check_same_shape(pred: torch.Tensor, target: torch.Tensor): """ Check that predictions and target have the same shape, else raise error """ if pred.shape != target.shape: raise RuntimeError('Predictions and targets are expected to have the same shape') def _input_format_classification( preds: torch.Tensor, target: torch.Tensor, threshold: float = 0.5 ) -> Tuple[torch.Tensor, torch.Tensor]: """ Convert preds and target tensors into label tensors Args: preds: either tensor with labels, tensor with probabilities/logits or multilabel tensor target: tensor with ground true labels threshold: float used for thresholding multilabel input Returns: preds: tensor with labels target: tensor with labels """ if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1): raise ValueError( "preds and target must have same number of dimensions, or one additional dimension for preds" ) if len(preds.shape) == len(target.shape) + 1: # multi class probabilites preds = torch.argmax(preds, dim=1) if len(preds.shape) == len(target.shape) and preds.dtype == torch.float: # binary or multilabel probablities preds = (preds >= threshold).long() return preds, target def _input_format_classification_one_hot( num_classes: int, preds: torch.Tensor, target: torch.Tensor, threshold: float = 0.5, multilabel: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: """ Convert preds and target tensors into one hot spare label tensors Args: num_classes: number of classes preds: either tensor with labels, tensor with probabilities/logits or multilabel tensor target: tensor with ground true labels threshold: float used for thresholding multilabel input multilabel: boolean flag indicating if input is multilabel Returns: preds: one hot tensor of shape [num_classes, -1] with predicted labels target: one hot tensors of shape [num_classes, -1] with true labels """ if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1): raise ValueError( "preds and target must have same number of dimensions, or one additional dimension for preds" ) if len(preds.shape) == len(target.shape) + 1: # multi class probabilites preds = torch.argmax(preds, dim=1) if len(preds.shape) == len(target.shape) and preds.dtype == torch.long and num_classes > 1 and not multilabel: # multi-class preds = to_onehot(preds, num_classes=num_classes) target = to_onehot(target, num_classes=num_classes) elif len(preds.shape) == len(target.shape) and preds.dtype == torch.float: # binary or multilabel probablities preds = (preds >= threshold).long() # transpose class as first dim and reshape if len(preds.shape) > 1: preds = preds.transpose(1, 0) target = target.transpose(1, 0) return preds.reshape(num_classes, -1), target.reshape(num_classes, -1)