import pytest import torch import torch.nn as nn from pytorch_lightning import LightningModule from pytorch_lightning.core.memory import UNKNOWN_SIZE, ModelSummary from tests.base.models import ParityModuleRNN class EmptyModule(LightningModule): """ A module that has no layers """ def __init__(self): super().__init__() self.parameter = torch.rand(3, 3, requires_grad=True) self.example_input_array = torch.zeros(1, 2, 3, 4, 5) def forward(self, *args, **kwargs): return {'loss': self.parameter.sum()} class UnorderedModel(LightningModule): """ A model in which the layers not defined in order of execution """ def __init__(self): super().__init__() # note: the definition order is intentionally scrambled for this test self.layer2 = nn.Linear(10, 2) self.combine = nn.Linear(7, 9) self.layer1 = nn.Linear(3, 5) self.relu = nn.ReLU() # this layer is unused, therefore input-/output shapes are unknown self.unused = nn.Conv2d(1, 1, 1) self.example_input_array = (torch.rand(2, 3), torch.rand(2, 10)) def forward(self, x, y): out1 = self.layer1(x) out2 = self.layer2(y) out = self.relu(torch.cat((out1, out2), 1)) out = self.combine(out) return out @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) def test_empty_model_summary_shapes(mode): """ Test that the summary works for models that have no submodules. """ model = EmptyModule() summary = model.summarize(mode=mode) assert summary.in_sizes == [] assert summary.out_sizes == [] assert summary.param_nums == [] @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) @pytest.mark.parametrize(['device', 'dtype'], [ pytest.param(torch.device('cpu'), torch.double), pytest.param(torch.device('cuda', 0), torch.float), pytest.param(torch.device('cuda', 0), torch.float16), ]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") def test_linear_model_summary_shapes(device, dtype, mode): """ Test that the model summary correctly computes the input- and output shapes. """ model = UnorderedModel().type(dtype).to(device) model.train() summary = model.summarize(mode=mode) assert summary.in_sizes == [ [2, 10], # layer 2 [2, 7], # combine [2, 3], # layer 1 [2, 7], # relu UNKNOWN_SIZE, ] assert summary.out_sizes == [ [2, 2], # layer 2 [2, 9], # combine [2, 5], # layer 1 [2, 7], # relu UNKNOWN_SIZE, ] assert model.training assert model.dtype == dtype assert model.device == device @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) def test_hooks_removed_after_summarize(mode): """ Test that all hooks were properly removed after summary, even ones that were not run. """ model = UnorderedModel() summary = ModelSummary(model, mode=mode) # hooks should be removed for _, layer in summary.summarize().items(): handle = layer._hook_handle assert handle.id not in handle.hooks_dict_ref() @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) def test_rnn_summary_shapes(mode): """ Test that the model summary works for RNNs. """ model = ParityModuleRNN() b = 3 t = 5 i = model.rnn.input_size h = model.rnn.hidden_size o = model.linear_out.out_features model.example_input_array = torch.zeros(b, t, 10) summary = model.summarize(mode=mode) assert summary.in_sizes == [ [b, t, i], # rnn [b, t, h], # linear ] assert summary.out_sizes == [ [[b, t, h], [[1, b, h], [1, b, h]]], # rnn [b, t, o] # linear ] @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) def test_summary_parameter_count(mode): """ Test that the summary counts the number of parameters in every submodule. """ model = UnorderedModel() summary = model.summarize(mode=mode) assert summary.param_nums == [ model.layer2.weight.numel() + model.layer2.bias.numel(), model.combine.weight.numel() + model.combine.bias.numel(), model.layer1.weight.numel() + model.layer1.bias.numel(), 0, # ReLU model.unused.weight.numel() + model.unused.bias.numel(), ] @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) def test_summary_layer_types(mode): """ Test that the summary displays the layer names correctly. """ model = UnorderedModel() summary = model.summarize(mode=mode) assert summary.layer_types == [ 'Linear', 'Linear', 'Linear', 'ReLU', 'Conv2d', ] @pytest.mark.parametrize(['mode'], [ pytest.param(ModelSummary.MODE_FULL), pytest.param(ModelSummary.MODE_TOP), ]) @pytest.mark.parametrize(['example_input', 'expected_size'], [ pytest.param([], UNKNOWN_SIZE), pytest.param((1, 2, 3), [UNKNOWN_SIZE] * 3), pytest.param(torch.tensor(0), UNKNOWN_SIZE), pytest.param(dict(tensor=torch.zeros(1, 2, 3)), UNKNOWN_SIZE), pytest.param(torch.zeros(2, 3, 4), [2, 3, 4]), pytest.param([torch.zeros(2, 3), torch.zeros(4, 5)], [[2, 3], [4, 5]]), pytest.param((torch.zeros(2, 3), torch.zeros(4, 5)), [[2, 3], [4, 5]]), ]) def test_example_input_array_types(example_input, expected_size, mode): """ Test the types of example inputs supported for display in the summary. """ class DummyModule(nn.Module): def forward(self, *args, **kwargs): return None class DummyLightningModule(LightningModule): def __init__(self): super().__init__() self.layer = DummyModule() # this LightningModule and submodule accept any type of input def forward(self, *args, **kwargs): return self.layer(*args, **kwargs) model = DummyLightningModule() model.example_input_array = example_input summary = model.summarize(mode=mode) assert summary.in_sizes == [expected_size]