# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock from unittest.mock import MagicMock import pytest from pytorch_lightning import Trainer from pytorch_lightning.loggers import _MLFLOW_AVAILABLE, MLFlowLogger from tests.helpers import BoringModel def mock_mlflow_run_creation(logger, experiment_name=None, experiment_id=None, run_id=None): """ Helper function to simulate mlflow client creating a new (or existing) experiment. """ run = MagicMock() run.info.run_id = run_id logger._mlflow_client.get_experiment_by_name = MagicMock(return_value=experiment_name) logger._mlflow_client.create_experiment = MagicMock(return_value=experiment_id) logger._mlflow_client.create_run = MagicMock(return_value=run) return logger @mock.patch('pytorch_lightning.loggers.mlflow.mlflow') @mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient') def test_mlflow_logger_exists(client, mlflow, tmpdir): """ Test launching three independent loggers with either same or different experiment name. """ run1 = MagicMock() run1.info.run_id = "run-id-1" run2 = MagicMock() run2.info.run_id = "run-id-2" run3 = MagicMock() run3.info.run_id = "run-id-3" # simulate non-existing experiment creation client.return_value.get_experiment_by_name = MagicMock(return_value=None) client.return_value.create_experiment = MagicMock(return_value="exp-id-1") # experiment_id client.return_value.create_run = MagicMock(return_value=run1) logger = MLFlowLogger('test', save_dir=tmpdir) assert logger._experiment_id is None assert logger._run_id is None _ = logger.experiment assert logger.experiment_id == "exp-id-1" assert logger.run_id == "run-id-1" assert logger.experiment.create_experiment.asset_called_once() client.reset_mock(return_value=True) # simulate existing experiment returns experiment id exp1 = MagicMock() exp1.experiment_id = "exp-id-1" client.return_value.get_experiment_by_name = MagicMock(return_value=exp1) client.return_value.create_run = MagicMock(return_value=run2) # same name leads to same experiment id, but different runs get recorded logger2 = MLFlowLogger('test', save_dir=tmpdir) assert logger2.experiment_id == logger.experiment_id assert logger2.run_id == "run-id-2" assert logger2.experiment.create_experiment.call_count == 0 assert logger2.experiment.create_run.asset_called_once() client.reset_mock(return_value=True) # simulate a 3rd experiment with new name client.return_value.get_experiment_by_name = MagicMock(return_value=None) client.return_value.create_experiment = MagicMock(return_value="exp-id-3") client.return_value.create_run = MagicMock(return_value=run3) # logger with new experiment name causes new experiment id and new run id to be created logger3 = MLFlowLogger('new', save_dir=tmpdir) assert logger3.experiment_id == "exp-id-3" != logger.experiment_id assert logger3.run_id == "run-id-3" @mock.patch("pytorch_lightning.loggers.mlflow.mlflow") @mock.patch("pytorch_lightning.loggers.mlflow.MlflowClient") def test_mlflow_log_dir(client, mlflow, tmpdir): """ Test that the trainer saves checkpoints in the logger's save dir. """ # simulate experiment creation with mlflow client mock run = MagicMock() run.info.run_id = "run-id" client.return_value.get_experiment_by_name = MagicMock(return_value=None) client.return_value.create_experiment = MagicMock(return_value="exp-id") client.return_value.create_run = MagicMock(return_value=run) # test construction of default log dir path logger = MLFlowLogger("test", save_dir=tmpdir) assert logger.save_dir == tmpdir assert logger.version == "run-id" assert logger.name == "exp-id" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, logger=logger, max_epochs=1, limit_train_batches=1, limit_val_batches=3, ) assert trainer.log_dir == logger.save_dir trainer.fit(model) assert trainer.checkpoint_callback.dirpath == (tmpdir / "exp-id" / "run-id" / 'checkpoints') assert set(os.listdir(trainer.checkpoint_callback.dirpath)) == {'epoch=0-step=0.ckpt'} assert trainer.log_dir == logger.save_dir def test_mlflow_logger_dirs_creation(tmpdir): """ Test that the logger creates the folders and files in the right place. """ if not _MLFLOW_AVAILABLE: pytest.xfail("test for explicit file creation requires mlflow dependency to be installed.") assert not os.listdir(tmpdir) logger = MLFlowLogger('test', save_dir=tmpdir) assert logger.save_dir == tmpdir assert set(os.listdir(tmpdir)) == {'.trash'} run_id = logger.run_id exp_id = logger.experiment_id # multiple experiment calls should not lead to new experiment folders for i in range(2): _ = logger.experiment assert set(os.listdir(tmpdir)) == {'.trash', exp_id} assert set(os.listdir(tmpdir / exp_id)) == {run_id, 'meta.yaml'} class CustomModel(BoringModel): def training_epoch_end(self, *args, **kwargs): super().training_epoch_end(*args, **kwargs) self.log('epoch', self.current_epoch) model = CustomModel() limit_batches = 5 trainer = Trainer( default_root_dir=tmpdir, logger=logger, max_epochs=1, limit_train_batches=limit_batches, limit_val_batches=limit_batches, log_gpu_memory=True, ) trainer.fit(model) assert set(os.listdir(tmpdir / exp_id)) == {run_id, 'meta.yaml'} assert 'epoch' in os.listdir(tmpdir / exp_id / run_id / 'metrics') assert set(os.listdir(tmpdir / exp_id / run_id / 'params')) == model.hparams.keys() assert trainer.checkpoint_callback.dirpath == (tmpdir / exp_id / run_id / 'checkpoints') assert os.listdir(trainer.checkpoint_callback.dirpath) == [f'epoch=0-step={limit_batches - 1}.ckpt'] @mock.patch('pytorch_lightning.loggers.mlflow.mlflow') @mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient') def test_mlflow_experiment_id_retrieved_once(client, mlflow, tmpdir): """ Test that the logger experiment_id retrieved only once. """ logger = MLFlowLogger('test', save_dir=tmpdir) _ = logger.experiment _ = logger.experiment _ = logger.experiment assert logger.experiment.get_experiment_by_name.call_count == 1 @mock.patch('pytorch_lightning.loggers.mlflow.mlflow') @mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient') def test_mlflow_logger_with_unexpected_characters(client, mlflow, tmpdir): """ Test that the logger raises warning with special characters not accepted by MLFlow. """ logger = MLFlowLogger('test', save_dir=tmpdir) metrics = {'[some_metric]': 10} with pytest.warns(RuntimeWarning, match='special characters in metric name'): logger.log_metrics(metrics) @mock.patch('pytorch_lightning.loggers.mlflow.mlflow') @mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient') def test_mlflow_logger_with_long_param_value(client, mlflow, tmpdir): """ Test that the logger raises warning with special characters not accepted by MLFlow. """ logger = MLFlowLogger('test', save_dir=tmpdir) value = 'test' * 100 key = 'test_param' params = {key: value} with pytest.warns(RuntimeWarning, match=f'Discard {key}={value}'): logger.log_hyperparams(params) @mock.patch('pytorch_lightning.loggers.mlflow.time') @mock.patch('pytorch_lightning.loggers.mlflow.mlflow') @mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient') def test_mlflow_logger_experiment_calls(client, mlflow, time, tmpdir): """ Test that the logger calls methods on the mlflow experiment correctly. """ time.return_value = 1 logger = MLFlowLogger('test', save_dir=tmpdir, artifact_location='my_artifact_location') logger._mlflow_client.get_experiment_by_name.return_value = None params = {'test': 'test_param'} logger.log_hyperparams(params) logger.experiment.log_param.assert_called_once_with(logger.run_id, 'test', 'test_param') metrics = {'some_metric': 10} logger.log_metrics(metrics) logger.experiment.log_metric.assert_called_once_with(logger.run_id, 'some_metric', 10, 1000, None) logger._mlflow_client.create_experiment.assert_called_once_with( name='test', artifact_location='my_artifact_location', )