# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from torch import nn from pytorch_lightning.utilities import find_shared_parameters, set_shared_parameters from tests.helpers import BoringModel class ParameterSharingModule(BoringModel): def __init__(self): super().__init__() self.layer_1 = nn.Linear(32, 10, bias=False) self.layer_2 = nn.Linear(10, 32, bias=False) self.layer_3 = nn.Linear(32, 10, bias=False) self.layer_3.weight = self.layer_1.weight def forward(self, x): x = self.layer_1(x) x = self.layer_2(x) x = self.layer_3(x) return x @pytest.mark.parametrize( ["model", "expected_shared_params"], [(BoringModel, []), (ParameterSharingModule, [["layer_1.weight", "layer_3.weight"]])], ) def test_find_shared_parameters(model, expected_shared_params): assert expected_shared_params == find_shared_parameters(model()) def test_set_shared_parameters(): model = ParameterSharingModule() set_shared_parameters(model, [["layer_1.weight", "layer_3.weight"]]) assert torch.all(torch.eq(model.layer_1.weight, model.layer_3.weight)) class SubModule(nn.Module): def __init__(self, layer): super().__init__() self.layer = layer def forward(self, x): return self.layer(x) class NestedModule(BoringModel): def __init__(self): super().__init__() self.layer = nn.Linear(32, 10, bias=False) self.net_a = SubModule(self.layer) self.layer_2 = nn.Linear(10, 32, bias=False) self.net_b = SubModule(self.layer) def forward(self, x): x = self.net_a(x) x = self.layer_2(x) x = self.net_b(x) return x model = NestedModule() set_shared_parameters(model, [["layer.weight", "net_a.layer.weight", "net_b.layer.weight"]]) assert torch.all(torch.eq(model.net_a.layer.weight, model.net_b.layer.weight))